Action Selection Under Uncertainty and Risk Involving High Consequence Rare Events

G. Rogova, R. Ilin
{"title":"Action Selection Under Uncertainty and Risk Involving High Consequence Rare Events","authors":"G. Rogova, R. Ilin","doi":"10.1109/COGSIMA.2018.8424001","DOIUrl":null,"url":null,"abstract":"This paper describes an approach to decision making for action selection in the presence of high consequence rare events. A model presented in the paper is an adaptation of the Multiple Quantile Theory that evaluates actions based on Choquet utility while considering decision making attitudes towards gains and losses. In our model, the capacities used for computing Choquet utility are based on the belief structure resulting from situation assessment, which allows for eliminating a priori parameter selection required by the Multiple Quantile Theory. A use case designed to illustrate the feasibility of the model in a simple military scenario is also presented.","PeriodicalId":231353,"journal":{"name":"2018 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGSIMA.2018.8424001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes an approach to decision making for action selection in the presence of high consequence rare events. A model presented in the paper is an adaptation of the Multiple Quantile Theory that evaluates actions based on Choquet utility while considering decision making attitudes towards gains and losses. In our model, the capacities used for computing Choquet utility are based on the belief structure resulting from situation assessment, which allows for eliminating a priori parameter selection required by the Multiple Quantile Theory. A use case designed to illustrate the feasibility of the model in a simple military scenario is also presented.
在涉及高后果罕见事件的不确定性和风险下的行动选择
本文介绍了一种在高后果罕见事件发生时选择行动的决策方法。文中介绍的模型是对多重量子理论的改编,该理论基于 Choquet 效用对行动进行评估,同时考虑到决策过程中对收益和损失的态度。在我们的模型中,用于计算 Choquet 效用的能力是基于情况评估所产生的信念结构,这样就可以消除多重量子理论所要求的先验参数选择。我们还介绍了一个使用案例,旨在说明该模型在简单军事场景中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信