Adaptive Code Completion with Meta-learning

Liyu Fang, Zhiqiu Huang, Yu Zhou, Taolue Chen
{"title":"Adaptive Code Completion with Meta-learning","authors":"Liyu Fang, Zhiqiu Huang, Yu Zhou, Taolue Chen","doi":"10.1145/3457913.3457933","DOIUrl":null,"url":null,"abstract":"Since human-written programs have useful local regularities, the ability to adapt to unseen, local context is an important challenge that successful models of source code must overcome. However, the current source code models mostly learn a common code pattern from large scale open-source codebases, which cannot make use of the localness nor satisfy developers’ personal preferences. Consequently, fast learning and adapting to unseen code patterns from limited developers’ code can provide new insights into source code completion. In this work, we train a base code model that is best able to learn semantic and structural information from context to improve predictions of unseen local tokens and propose an adaptive code model leveraging meta-learning techniques. We demonstrate highly improved performance in experiments on a large scale Java GitHub corpus compared with baselines.","PeriodicalId":194449,"journal":{"name":"Proceedings of the 12th Asia-Pacific Symposium on Internetware","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th Asia-Pacific Symposium on Internetware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457913.3457933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since human-written programs have useful local regularities, the ability to adapt to unseen, local context is an important challenge that successful models of source code must overcome. However, the current source code models mostly learn a common code pattern from large scale open-source codebases, which cannot make use of the localness nor satisfy developers’ personal preferences. Consequently, fast learning and adapting to unseen code patterns from limited developers’ code can provide new insights into source code completion. In this work, we train a base code model that is best able to learn semantic and structural information from context to improve predictions of unseen local tokens and propose an adaptive code model leveraging meta-learning techniques. We demonstrate highly improved performance in experiments on a large scale Java GitHub corpus compared with baselines.
基于元学习的自适应代码完成
由于人类编写的程序具有有用的局部规则,因此适应不可见的局部上下文的能力是成功的源代码模型必须克服的重要挑战。然而,目前的源代码模型大多是从大规模的开源代码库中学习通用的代码模式,不能充分利用局部性,也不能满足开发人员的个人偏好。因此,从有限的开发人员的代码中快速学习和适应看不见的代码模式可以为源代码完成提供新的见解。在这项工作中,我们训练了一个最能从上下文中学习语义和结构信息的基本代码模型,以改进对未见过的本地令牌的预测,并提出了一个利用元学习技术的自适应代码模型。与基线相比,我们在大规模Java GitHub语料库上的实验中展示了高度改进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信