Scene Reconstruction from a Single Depth Image Using 3D CNN

Alessandro Palla, D. Moloney, L. Fanucci
{"title":"Scene Reconstruction from a Single Depth Image Using 3D CNN","authors":"Alessandro Palla, D. Moloney, L. Fanucci","doi":"10.1145/3155077.3155098","DOIUrl":null,"url":null,"abstract":"Scene reconstruction from multiple viewpoints are not always possible and rather it represents a small minority of the potential applications, from robotic manipulators to drones, autonomous vehicles etc... To overcome those limitations, we propose a fully convolutional 3D neural network capable of reconstructing a full scene from a single depth image by creating a 3D representation of it and automatically filling holes and inserting hidden elements. Our algorithm was evaluated on a real word dataset of tabletop scenes acquired using a Kinect and processed using KinectFusion software in order to obtain ground truth for network training and evaluation. Extensive measurements show that our deep neural network architecture outperforms the previous state of the art in terms of both precision and recall for the scene reconstruction task.","PeriodicalId":237079,"journal":{"name":"Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3155077.3155098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scene reconstruction from multiple viewpoints are not always possible and rather it represents a small minority of the potential applications, from robotic manipulators to drones, autonomous vehicles etc... To overcome those limitations, we propose a fully convolutional 3D neural network capable of reconstructing a full scene from a single depth image by creating a 3D representation of it and automatically filling holes and inserting hidden elements. Our algorithm was evaluated on a real word dataset of tabletop scenes acquired using a Kinect and processed using KinectFusion software in order to obtain ground truth for network training and evaluation. Extensive measurements show that our deep neural network architecture outperforms the previous state of the art in terms of both precision and recall for the scene reconstruction task.
使用3D CNN从单个深度图像重建场景
从多个视点重建场景并不总是可能的,而是代表了一小部分潜在的应用,从机器人操纵器到无人机,自动驾驶汽车等…为了克服这些限制,我们提出了一个全卷积3D神经网络,能够通过创建3D表示并自动填充洞和插入隐藏元素,从单个深度图像重建完整场景。我们的算法在使用Kinect获取的桌面场景的真实单词数据集上进行评估,并使用KinectFusion软件进行处理,以获得用于网络训练和评估的地面真实值。大量的测量表明,我们的深度神经网络架构在场景重建任务的精度和召回率方面都优于以前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信