Multi-modal Emotion Reaction Intensity Estimation with Temporal Augmentation

Feng Qiu, Bowen Ma, Wei Zhang, Yu-qiong Ding
{"title":"Multi-modal Emotion Reaction Intensity Estimation with Temporal Augmentation","authors":"Feng Qiu, Bowen Ma, Wei Zhang, Yu-qiong Ding","doi":"10.1109/CVPRW59228.2023.00613","DOIUrl":null,"url":null,"abstract":"Emotion reaction intensity (ERI) estimation aims to estimate the emotion intensities of subjects reacting to various video-based stimuli. It plays an important role in human affective behavior analysis. In this paper, we proposed a effective solution for addressing the task of ERI estimation in the fifth Affective Behavior Analysis in the wild (ABAW) competition. Based on multi-modal information, We first extract uni-modal features from images, speeches and texts, respectively and then regress the intensities of 7 emotions. To enhance the model generalization and capture context information, we employ the Temporal Augmentation module to adapt to various video samples and the Temporal SE Block to reweight temporal features adaptively. The extensive experiments conducted on large-scale dataset, Hume-Reaction, demonstrate the effectiveness of our approach. Our method achieves average pearson’s correlations coefficient of 0.4160 on the validation set and obtain third place in the ERI Estimation Challenge of ABAW 2023.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion reaction intensity (ERI) estimation aims to estimate the emotion intensities of subjects reacting to various video-based stimuli. It plays an important role in human affective behavior analysis. In this paper, we proposed a effective solution for addressing the task of ERI estimation in the fifth Affective Behavior Analysis in the wild (ABAW) competition. Based on multi-modal information, We first extract uni-modal features from images, speeches and texts, respectively and then regress the intensities of 7 emotions. To enhance the model generalization and capture context information, we employ the Temporal Augmentation module to adapt to various video samples and the Temporal SE Block to reweight temporal features adaptively. The extensive experiments conducted on large-scale dataset, Hume-Reaction, demonstrate the effectiveness of our approach. Our method achieves average pearson’s correlations coefficient of 0.4160 on the validation set and obtain third place in the ERI Estimation Challenge of ABAW 2023.
基于时间增强的多模态情绪反应强度估计
情绪反应强度(ERI)估计的目的是估计受试者对各种基于视频的刺激的情绪强度。它在人类情感行为分析中起着重要作用。本文针对第五届野外情感行为分析(ABAW)竞赛中ERI估计的问题,提出了一种有效的解决方案。基于多模态信息,我们首先分别从图像、语音和文本中提取单模态特征,然后对7种情绪的强度进行回归。为了增强模型的泛化和捕获上下文信息,我们使用了时间增强模块来适应各种视频样本,并使用了时间SE块来自适应地重加权时间特征。在大规模数据集休姆-反应上进行的大量实验证明了我们方法的有效性。我们的方法在验证集上实现了0.4160的平均pearson相关系数,并在abaw2023的ERI估计挑战赛中获得了第三名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信