A False Data Injection Attack Detection Approach Using Convolutional Neural Networks in Unmanned Aerial Systems

C. Titouna, Farid Naït-Abdesselam
{"title":"A False Data Injection Attack Detection Approach Using Convolutional Neural Networks in Unmanned Aerial Systems","authors":"C. Titouna, Farid Naït-Abdesselam","doi":"10.1109/ISCC55528.2022.9912761","DOIUrl":null,"url":null,"abstract":"With the growing use of Unmanned Aerial Vehicles (UAVs) in military and civilian applications, cyber-attacks are increasing significantly. Therefore, detection of attacks becomes indispensable for such systems. In this paper, we focus on the detection of False Data Injection (FDI) attacks in Unmanned Aerial Systems (UASs). Considered to be the most performed attack, an attacker injects fake data into the system in order to disrupt the final decision. To combat this threat, our proposal is built on image analysis and classification. First, we resize the received image in order to adapt it to feed the classifier using the Nearest Neighbor Interpolation (NNI). Second, we train, validate, and test a Convolutional Neural Network (CNN) to perform the image classification. Finally, we compare each classification result classes to a neighborhood using Euclidean distance. Numerical results on the VisDrone dataset demonstrate the efficiency of our proposal under a set of metrics.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing use of Unmanned Aerial Vehicles (UAVs) in military and civilian applications, cyber-attacks are increasing significantly. Therefore, detection of attacks becomes indispensable for such systems. In this paper, we focus on the detection of False Data Injection (FDI) attacks in Unmanned Aerial Systems (UASs). Considered to be the most performed attack, an attacker injects fake data into the system in order to disrupt the final decision. To combat this threat, our proposal is built on image analysis and classification. First, we resize the received image in order to adapt it to feed the classifier using the Nearest Neighbor Interpolation (NNI). Second, we train, validate, and test a Convolutional Neural Network (CNN) to perform the image classification. Finally, we compare each classification result classes to a neighborhood using Euclidean distance. Numerical results on the VisDrone dataset demonstrate the efficiency of our proposal under a set of metrics.
基于卷积神经网络的无人机系统虚假数据注入攻击检测方法
随着无人驾驶飞行器(uav)在军事和民用领域的应用越来越广泛,网络攻击也越来越多。因此,对这些系统进行攻击检测是必不可少的。本文主要研究了无人机系统中虚假数据注入(FDI)攻击的检测问题。攻击者将虚假数据注入系统以破坏最终决策,这被认为是执行次数最多的攻击。为了对抗这种威胁,我们的建议建立在图像分析和分类的基础上。首先,我们调整接收到的图像的大小,以便使用最近邻插值(NNI)使其适应分类器。其次,我们训练、验证和测试卷积神经网络(CNN)来执行图像分类。最后,我们使用欧几里得距离将每个分类结果类与邻域进行比较。在VisDrone数据集上的数值结果证明了我们的建议在一组指标下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信