Particle simulation of the initial dynamic damage behaviors of KDP crystals under intense laser irradiation

Laser Damage Pub Date : 2021-10-12 DOI:10.1117/12.2618830
Jian Cheng, Dinghuai Yang, Li Lai, Mingjun Chen, Jinghe Wang, Hao Yang, Linjie Zhao, Qi Liu, Wenyu Ding, Zhichao Liu
{"title":"Particle simulation of the initial dynamic damage behaviors of KDP crystals under intense laser irradiation","authors":"Jian Cheng, Dinghuai Yang, Li Lai, Mingjun Chen, Jinghe Wang, Hao Yang, Linjie Zhao, Qi Liu, Wenyu Ding, Zhichao Liu","doi":"10.1117/12.2618830","DOIUrl":null,"url":null,"abstract":"Potassium dihydrogen phosphate (KDP) crystal has been regarded as the solely irreplaceable component in laser-driven inertial confinement fusion (ICF) facilities. Nevertheless, the laser-induced damage on KDP crystal surfaces under highenergy laser irradiation considerably restricts the output power of ICF facilities. The laser damage event on KDP surface is an extremely complex process, among which the non-heat initial energy deposition is regarded as the major absorbed energy source, determining the subsequent thermal damage process and final damage morphology. The initial energy deposition process is a non-heat stage, where the plasmas are generated from ionization processes under intense laser irradiation. However, there is still no available model that can well reproduce the dynamic interaction behaviors between the high-energy laser and plasmas in the initial energy deposition process, resulting in the laser-induced damage mechanisms on KDP crystal surface still not fully revealed. In this work, a Particle-In-Cell (PIC) model is established to investigate the initial dynamic damage behaviors of KDP crystals under intense laser irradiation. On basis of this model, the crater formation process and the particle ejection dynamics involved in the laser damage event are reproduced. The reproduced characteristic parameters of laser damage craters on KDP input and output surfaces, and the obtained particle ejection angles are consistent with the previously reported laser damage morphology, which verifies the effectiveness of the established PIC model. This work could provide theoretical means for investigating the initial energy deposition process and also offer further insights in understanding the laser-induced damage mechanisms of KDP crystal components.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2618830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Potassium dihydrogen phosphate (KDP) crystal has been regarded as the solely irreplaceable component in laser-driven inertial confinement fusion (ICF) facilities. Nevertheless, the laser-induced damage on KDP crystal surfaces under highenergy laser irradiation considerably restricts the output power of ICF facilities. The laser damage event on KDP surface is an extremely complex process, among which the non-heat initial energy deposition is regarded as the major absorbed energy source, determining the subsequent thermal damage process and final damage morphology. The initial energy deposition process is a non-heat stage, where the plasmas are generated from ionization processes under intense laser irradiation. However, there is still no available model that can well reproduce the dynamic interaction behaviors between the high-energy laser and plasmas in the initial energy deposition process, resulting in the laser-induced damage mechanisms on KDP crystal surface still not fully revealed. In this work, a Particle-In-Cell (PIC) model is established to investigate the initial dynamic damage behaviors of KDP crystals under intense laser irradiation. On basis of this model, the crater formation process and the particle ejection dynamics involved in the laser damage event are reproduced. The reproduced characteristic parameters of laser damage craters on KDP input and output surfaces, and the obtained particle ejection angles are consistent with the previously reported laser damage morphology, which verifies the effectiveness of the established PIC model. This work could provide theoretical means for investigating the initial energy deposition process and also offer further insights in understanding the laser-induced damage mechanisms of KDP crystal components.
强激光照射下KDP晶体初始动态损伤行为的粒子模拟
磷酸二氢钾(KDP)晶体被认为是激光驱动惯性约束聚变(ICF)设施中唯一不可替代的部件。然而,在高能激光照射下,激光对KDP晶体表面的损伤极大地限制了ICF设备的输出功率。激光在KDP表面的损伤事件是一个极其复杂的过程,其中非热初始能量沉积是主要的吸收能量来源,决定了后续的热损伤过程和最终的损伤形态。初始能量沉积过程为非热阶段,等离子体在强激光照射下由电离过程产生。然而,目前还没有一个模型可以很好地再现高能激光与等离子体在初始能量沉积过程中的动态相互作用行为,导致激光对KDP晶体表面的损伤机制仍未完全揭示。本文建立了粒子胞内(PIC)模型,研究了强激光照射下KDP晶体的初始动态损伤行为。在此基础上,再现了激光损伤事件中弹坑的形成过程和粒子抛射动力学。在KDP输入和输出面上再现激光损伤坑的特征参数,得到的粒子弹射角与已有报道的激光损伤形貌一致,验证了所建立的PIC模型的有效性。这项工作为研究初始能量沉积过程提供了理论手段,也为理解KDP晶体组件的激光损伤机制提供了进一步的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信