{"title":"3D symmetry-curvature duality theorems","authors":"A. Yuille, M. Leyton","doi":"10.1016/0734-189X(90)90126-G","DOIUrl":null,"url":null,"abstract":"<div><p>We prove theorems showing a duality between the surface curvatures of three-dimensional objects and the existence of symmetry axes. More precisely, we prove that, given a surface, for each maximum or minimum of the principle curvature along a line of curvature, there is a symmetry axis terminating at this point. Moreover, such points are generically the only points at which these axes can terminate. These theorems generalize results obtained by Leyton for two-dimensional objects.</p></div>","PeriodicalId":100319,"journal":{"name":"Computer Vision, Graphics, and Image Processing","volume":"52 1","pages":"Pages 124-140"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0734-189X(90)90126-G","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision, Graphics, and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0734189X9090126G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
We prove theorems showing a duality between the surface curvatures of three-dimensional objects and the existence of symmetry axes. More precisely, we prove that, given a surface, for each maximum or minimum of the principle curvature along a line of curvature, there is a symmetry axis terminating at this point. Moreover, such points are generically the only points at which these axes can terminate. These theorems generalize results obtained by Leyton for two-dimensional objects.