Business Applications for Current Developments in Big Data Clustering: An Overview

G. Hass, Parker Simon, R. Kashef
{"title":"Business Applications for Current Developments in Big Data Clustering: An Overview","authors":"G. Hass, Parker Simon, R. Kashef","doi":"10.1109/IEEM45057.2020.9309941","DOIUrl":null,"url":null,"abstract":"\"The world's most valuable resource is no longer oil, but data\" announces the headline of the May 6th, 2017 edition of The Economist; the digital revolution is here to stay. The primary currency of this movement is big data. The complexity of big data is defined as the relationships and how the data can be arranged with one another. Facebook has 30 billion pieces of unique information shared each month; this data's sheer size can cause an immeasurable amount of combinations for relational data. Analyzing this big data can reveal various useful insights for decision-makers. With the adoption of clustering analysis, patterns and hidden information can be developed from big raw data that can be used across many business problems and applications. In this paper, an overview of the state of the art of clustering analysis and its adoption in business applications in the era of big data is presented.","PeriodicalId":226426,"journal":{"name":"2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM45057.2020.9309941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

"The world's most valuable resource is no longer oil, but data" announces the headline of the May 6th, 2017 edition of The Economist; the digital revolution is here to stay. The primary currency of this movement is big data. The complexity of big data is defined as the relationships and how the data can be arranged with one another. Facebook has 30 billion pieces of unique information shared each month; this data's sheer size can cause an immeasurable amount of combinations for relational data. Analyzing this big data can reveal various useful insights for decision-makers. With the adoption of clustering analysis, patterns and hidden information can be developed from big raw data that can be used across many business problems and applications. In this paper, an overview of the state of the art of clustering analysis and its adoption in business applications in the era of big data is presented.
当前大数据集群发展的商业应用:概述
“世界上最有价值的资源不再是石油,而是数据”,这是《经济学人》2017年5月6日的头条新闻;数字革命将会持续下去。这场运动的主要货币是大数据。大数据的复杂性被定义为数据之间的关系以及如何排列数据。Facebook每个月有300亿条独特的信息被分享;该数据的绝对规模可能导致关系数据的不可估量的组合。分析这些大数据可以为决策者提供各种有用的见解。通过采用聚类分析,可以从可用于许多业务问题和应用程序的大原始数据中开发模式和隐藏信息。本文概述了聚类分析的现状及其在大数据时代商业应用中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信