{"title":"Business Applications for Current Developments in Big Data Clustering: An Overview","authors":"G. Hass, Parker Simon, R. Kashef","doi":"10.1109/IEEM45057.2020.9309941","DOIUrl":null,"url":null,"abstract":"\"The world's most valuable resource is no longer oil, but data\" announces the headline of the May 6th, 2017 edition of The Economist; the digital revolution is here to stay. The primary currency of this movement is big data. The complexity of big data is defined as the relationships and how the data can be arranged with one another. Facebook has 30 billion pieces of unique information shared each month; this data's sheer size can cause an immeasurable amount of combinations for relational data. Analyzing this big data can reveal various useful insights for decision-makers. With the adoption of clustering analysis, patterns and hidden information can be developed from big raw data that can be used across many business problems and applications. In this paper, an overview of the state of the art of clustering analysis and its adoption in business applications in the era of big data is presented.","PeriodicalId":226426,"journal":{"name":"2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM45057.2020.9309941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
"The world's most valuable resource is no longer oil, but data" announces the headline of the May 6th, 2017 edition of The Economist; the digital revolution is here to stay. The primary currency of this movement is big data. The complexity of big data is defined as the relationships and how the data can be arranged with one another. Facebook has 30 billion pieces of unique information shared each month; this data's sheer size can cause an immeasurable amount of combinations for relational data. Analyzing this big data can reveal various useful insights for decision-makers. With the adoption of clustering analysis, patterns and hidden information can be developed from big raw data that can be used across many business problems and applications. In this paper, an overview of the state of the art of clustering analysis and its adoption in business applications in the era of big data is presented.