A SURVEY ON PREDICTION OF AUTISM SPECTRUM DISORDER USING DATA SCIENCE TECHNIQUES

R. Ramya
{"title":"A SURVEY ON PREDICTION OF AUTISM SPECTRUM DISORDER USING DATA SCIENCE TECHNIQUES","authors":"R. Ramya","doi":"10.26483/ijarcs.v14i2.6969","DOIUrl":null,"url":null,"abstract":"Autism Spectrum Disorder is a lifelong brain developmental disorder. Diagnosing the level of Autism and predicting the severity of the same are too complex, and it requires a depth analysis of the historical data on the autism patient. Nowadays, Data science techniques play a vital role in diagnosing autism. Decision Tree, Random Forest, Logistic Regression, Adaboost, Naïve Bayse, K-Nearest Neighbour, Support Vector Machine and etc., are the few techniques labeled under the roof of data science are used to predict such disorders. The paper aims to present a survey on the various models proposed by various researchers to predict the severity of autism using data science techniques.","PeriodicalId":287911,"journal":{"name":"International Journal of Advanced Research in Computer Science","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26483/ijarcs.v14i2.6969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autism Spectrum Disorder is a lifelong brain developmental disorder. Diagnosing the level of Autism and predicting the severity of the same are too complex, and it requires a depth analysis of the historical data on the autism patient. Nowadays, Data science techniques play a vital role in diagnosing autism. Decision Tree, Random Forest, Logistic Regression, Adaboost, Naïve Bayse, K-Nearest Neighbour, Support Vector Machine and etc., are the few techniques labeled under the roof of data science are used to predict such disorders. The paper aims to present a survey on the various models proposed by various researchers to predict the severity of autism using data science techniques.
应用数据科学技术预测自闭症谱系障碍的研究综述
自闭症谱系障碍是一种终身的大脑发育障碍。诊断自闭症的程度和预测自闭症的严重程度过于复杂,需要对自闭症患者的历史数据进行深入分析。如今,数据科学技术在诊断自闭症方面发挥着至关重要的作用。决策树、随机森林、逻辑回归、Adaboost、Naïve贝叶斯、k近邻、支持向量机等是少数被标记为数据科学的技术,用于预测这类疾病。本文旨在对不同研究人员提出的使用数据科学技术预测自闭症严重程度的各种模型进行调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信