{"title":"Interval Observer Design Based on Taylor Models for Nonlinear Uncertain Continuous-Time Systems","authors":"M. Kletting, A. Rauh, E. Hofer, H. Aschemann","doi":"10.1109/SCAN.2006.26","DOIUrl":null,"url":null,"abstract":"In most applications in control engineering not all state variables can be measured. Consequently, state estimation is performed to reconstruct the non-measurable states taking into account both system dynamics and the measurement model. If the system is subject to interval bounded uncertainties, an interval observer provides a guaranteed estimation of all states. The estimation consists of a recursive application of prediction and correction steps. The prediction step corresponds to a verified integration of the system model describing the system dynamics between two points of time at which measured data is available. In this paper, a Taylor model based integrator is used. Considering the state enclosures obtained in the prediction step, the correction step reconstructs states and parameters from the uncertain measurements with the help of a measurement model. The enclosures of states and parameters determined by the interval observer are consistent with both system and measurement models as well as all uncertainties.","PeriodicalId":388600,"journal":{"name":"12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCAN.2006.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In most applications in control engineering not all state variables can be measured. Consequently, state estimation is performed to reconstruct the non-measurable states taking into account both system dynamics and the measurement model. If the system is subject to interval bounded uncertainties, an interval observer provides a guaranteed estimation of all states. The estimation consists of a recursive application of prediction and correction steps. The prediction step corresponds to a verified integration of the system model describing the system dynamics between two points of time at which measured data is available. In this paper, a Taylor model based integrator is used. Considering the state enclosures obtained in the prediction step, the correction step reconstructs states and parameters from the uncertain measurements with the help of a measurement model. The enclosures of states and parameters determined by the interval observer are consistent with both system and measurement models as well as all uncertainties.