{"title":"Graph of neural networks for pattern recognition","authors":"H. Cardot, O. Lézoray","doi":"10.1109/ICPR.2002.1048441","DOIUrl":null,"url":null,"abstract":"This paper presents a new architecture of neural networks designed for pattern recognition. The concept of induction graphs coupled with a divide-and-conquer strategy defines a Graph of Neural Network (GNN). It is based on a set of several little neural networks, each one discriminating only two classes. The principles used to perform the decision of classification are : a branch quality index and a selection by elimination. A significant gain in the global classification rate can be obtained by using a GNN. This is illustrated by tests on databases from the UCI machine learning database repository. The experimental results show that a GNN can achieve an improved performance in classification.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents a new architecture of neural networks designed for pattern recognition. The concept of induction graphs coupled with a divide-and-conquer strategy defines a Graph of Neural Network (GNN). It is based on a set of several little neural networks, each one discriminating only two classes. The principles used to perform the decision of classification are : a branch quality index and a selection by elimination. A significant gain in the global classification rate can be obtained by using a GNN. This is illustrated by tests on databases from the UCI machine learning database repository. The experimental results show that a GNN can achieve an improved performance in classification.