{"title":"Learning and generalization of one-hidden-layer neural networks, going beyond standard Gaussian data","authors":"Hongkang Li, Shuai Zhang, M. Wang","doi":"10.1109/CISS53076.2022.9751184","DOIUrl":null,"url":null,"abstract":"This paper analyzes the convergence and generalization of training a one-hidden-layer neural network when the input features follow the Gaussian mixture model consisting of a finite number of Gaussian distributions. Assuming the labels are generated from a teacher model with an unknown ground truth weight, the learning problem is to estimate the underlying teacher model by minimizing a non-convex risk function over a student neural network. With a finite number of training samples, referred to the sample complexity, the iterations are proved to converge linearly to a critical point with guaranteed generalization error. In addition, for the first time, this paper characterizes the impact of the input distributions on the sample complexity and the learning rate.","PeriodicalId":305918,"journal":{"name":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS53076.2022.9751184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper analyzes the convergence and generalization of training a one-hidden-layer neural network when the input features follow the Gaussian mixture model consisting of a finite number of Gaussian distributions. Assuming the labels are generated from a teacher model with an unknown ground truth weight, the learning problem is to estimate the underlying teacher model by minimizing a non-convex risk function over a student neural network. With a finite number of training samples, referred to the sample complexity, the iterations are proved to converge linearly to a critical point with guaranteed generalization error. In addition, for the first time, this paper characterizes the impact of the input distributions on the sample complexity and the learning rate.