A Pre-microRNA Classifier by Structural and Thermodynamic Motifs

Vinod S. S. Chandra, Reshmi Girijadevi
{"title":"A Pre-microRNA Classifier by Structural and Thermodynamic Motifs","authors":"Vinod S. S. Chandra, Reshmi Girijadevi","doi":"10.1109/NABIC.2009.5393604","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) have been found in diverse organisms and play critical role in gene expression regulations of many essential cellular processes. Discovery of miRNAs and identification of their target genes are fundamental to the study of such regulatory circuits. To distinguish the real pre-miRNA from other stem loop hairpins with similar stem loop (pseudo pre-miRNA) is an important task in molecular biology. From the analysis of experimentally proved pre-miRNAs, we identified 17 parameters for miRNA formation. These parameters are grouped into two categories: structural and thermodynamic properties of the pre-miRNAs. A set of feature vector was formed from the pre-miRNA-like hairpins of human, mouse and rat. A feed forward multi layer perceptron Artificial Neural Network (ANN) classifier is trained by these feature vectors. This classifier is an application program, that decide whether a given sequence is a pre-miRNA like hairpin sequence or not. If the sequence is a pre-miRNA like hairpin, then the ANN classifier will predict whether it is a real pre-miRNA or a pseudo premiRNA. The approach can classify correctly the precursors of Human Mouse and Rat, with an average sensitivity of 97.40% and specificity of 95.85%. When compared with previous approaches, MiPred, mR-abela, ProMiR and Triplet SVM classifier, current approach was greater in total accuracy.","PeriodicalId":129539,"journal":{"name":"World Congress on Nature and Biologically Inspired Computing","volume":"124 1 Suppl 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Congress on Nature and Biologically Inspired Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NABIC.2009.5393604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

MicroRNAs (miRNAs) have been found in diverse organisms and play critical role in gene expression regulations of many essential cellular processes. Discovery of miRNAs and identification of their target genes are fundamental to the study of such regulatory circuits. To distinguish the real pre-miRNA from other stem loop hairpins with similar stem loop (pseudo pre-miRNA) is an important task in molecular biology. From the analysis of experimentally proved pre-miRNAs, we identified 17 parameters for miRNA formation. These parameters are grouped into two categories: structural and thermodynamic properties of the pre-miRNAs. A set of feature vector was formed from the pre-miRNA-like hairpins of human, mouse and rat. A feed forward multi layer perceptron Artificial Neural Network (ANN) classifier is trained by these feature vectors. This classifier is an application program, that decide whether a given sequence is a pre-miRNA like hairpin sequence or not. If the sequence is a pre-miRNA like hairpin, then the ANN classifier will predict whether it is a real pre-miRNA or a pseudo premiRNA. The approach can classify correctly the precursors of Human Mouse and Rat, with an average sensitivity of 97.40% and specificity of 95.85%. When compared with previous approaches, MiPred, mR-abela, ProMiR and Triplet SVM classifier, current approach was greater in total accuracy.
基于结构和热力学基序的Pre-microRNA分类器
MicroRNAs (miRNAs)在多种生物体中被发现,在许多重要细胞过程的基因表达调控中起着关键作用。mirna的发现及其靶基因的鉴定是研究此类调控回路的基础。区分真正的pre-miRNA与其他具有相似茎环的茎环发夹(伪pre-miRNA)是分子生物学中的一项重要任务。通过对实验证明的pre-miRNA的分析,我们确定了17个miRNA形成的参数。这些参数分为两类:pre- mirna的结构和热力学性质。将人、小鼠和大鼠的pre- mirna样发夹形成一组特征向量。利用这些特征向量训练出前馈多层感知器人工神经网络(ANN)分类器。该分类器是一个应用程序,用于判断给定序列是否为像发夹序列一样的pre-miRNA。如果序列是类似发夹的pre-miRNA,那么ANN分类器将预测它是真正的pre-miRNA还是伪premiRNA。该方法对人类小鼠和大鼠的前体细胞分类正确,平均灵敏度为97.40%,特异性为95.85%。与先前的MiPred、mR-abela、ProMiR和Triplet SVM分类器相比,本方法的总准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信