Online Inter-Camera Trajectory Association Exploiting Person Re-Identification and Camera Topology

Na Jiang, Si-Yuan Bai, Yue Xu, Chang Xing, Zhong Zhou, Wei Wu
{"title":"Online Inter-Camera Trajectory Association Exploiting Person Re-Identification and Camera Topology","authors":"Na Jiang, Si-Yuan Bai, Yue Xu, Chang Xing, Zhong Zhou, Wei Wu","doi":"10.1145/3240508.3240663","DOIUrl":null,"url":null,"abstract":"Online inter-camera trajectory association is a promising topic in intelligent video surveillance, which concentrates on associating trajectories belong to the same individual across different cameras according to time. It remains challenging due to the inconsistent appearance of a person in different cameras and the lack of spatio-temporal constraints between cameras. Besides, the orientation variations and the partial occlusions significantly increase the difficulty of inter-camera trajectory association. Targeting to solve these problems, this work proposes an orientation-driven person re-identification (ODPR) and an effective camera topology estimation based on appearance features for online inter-camera trajectory association. ODPR explicitly leverages the orientation cues and stable torso features to learn discriminative feature representations for identifying trajectories across cameras, which alleviates the pedestrian orientation variations by the designed orientation-driven loss function and orientation aware weights. The effective camera topology estimation introduces appearance features to generate the correct spatio-temporal constraints for narrowing the retrieval range, which improves the time efficiency and provides the possibility for intelligent inter-camera trajectory association in large-scale surveillance environments. Extensive experimental results demonstrate that our proposed approach significantly outperforms most state-of-the-art methods on the popular person re-identification datasets and the public multi-target, multi-camera tracking benchmark.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Online inter-camera trajectory association is a promising topic in intelligent video surveillance, which concentrates on associating trajectories belong to the same individual across different cameras according to time. It remains challenging due to the inconsistent appearance of a person in different cameras and the lack of spatio-temporal constraints between cameras. Besides, the orientation variations and the partial occlusions significantly increase the difficulty of inter-camera trajectory association. Targeting to solve these problems, this work proposes an orientation-driven person re-identification (ODPR) and an effective camera topology estimation based on appearance features for online inter-camera trajectory association. ODPR explicitly leverages the orientation cues and stable torso features to learn discriminative feature representations for identifying trajectories across cameras, which alleviates the pedestrian orientation variations by the designed orientation-driven loss function and orientation aware weights. The effective camera topology estimation introduces appearance features to generate the correct spatio-temporal constraints for narrowing the retrieval range, which improves the time efficiency and provides the possibility for intelligent inter-camera trajectory association in large-scale surveillance environments. Extensive experimental results demonstrate that our proposed approach significantly outperforms most state-of-the-art methods on the popular person re-identification datasets and the public multi-target, multi-camera tracking benchmark.
基于人再识别和摄像机拓扑的在线摄像机间轨迹关联
在线摄像机间轨迹关联是智能视频监控中一个很有前途的研究课题,它关注的是根据时间将不同摄像机间属于同一个体的轨迹关联起来。它仍然具有挑战性,因为一个人在不同的相机中出现的外观不一致,并且缺乏相机之间的时空限制。此外,方向变化和部分遮挡显著增加了相机间轨迹关联的难度。针对这些问题,本文提出了一种方向驱动的人再识别(ODPR)和一种有效的基于外观特征的相机拓扑估计方法,用于在线相机间轨迹关联。ODPR明确地利用方向线索和稳定的躯干特征来学习判别特征表示,以识别摄像机之间的轨迹,通过设计的方向驱动损失函数和方向感知权来减轻行人的方向变化。有效的摄像机拓扑估计引入了外观特征,生成了正确的时空约束,从而缩小了检索范围,提高了时间效率,为大规模监控环境下的智能摄像机间轨迹关联提供了可能。大量的实验结果表明,我们提出的方法在流行的人物再识别数据集和公共多目标,多相机跟踪基准上明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信