Exploiting the Kinematic Redundancy of a 6+3 Dofs Parallel Mechanism

Louis-Thomas Schreiber, C. Gosselin
{"title":"Exploiting the Kinematic Redundancy of a 6+3 Dofs Parallel Mechanism","authors":"Louis-Thomas Schreiber, C. Gosselin","doi":"10.1115/DETC2018-85322","DOIUrl":null,"url":null,"abstract":"This paper presents trajectory planning methods for a kinematically redundant parallel mechanism. The architecture of the mechanism is similar to the well-known Gough-Stewart platform and it retains its advantages, i.e., the members connecting the base to the moving platform are only subjected to tensile/compressive loads. The kinematic redundancy is exploited to avoid singularities and extend the rotational workspace. The architecture is described and the associated kinematic relationships are presented. Solutions for the inverse kinematics are given, as well as strategies to take into account the limitations of the mechanism such as mechanical interferences and velocity limits of the actuators while controlling the redundant degrees of freedom.","PeriodicalId":132121,"journal":{"name":"Volume 5B: 42nd Mechanisms and Robotics Conference","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 42nd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents trajectory planning methods for a kinematically redundant parallel mechanism. The architecture of the mechanism is similar to the well-known Gough-Stewart platform and it retains its advantages, i.e., the members connecting the base to the moving platform are only subjected to tensile/compressive loads. The kinematic redundancy is exploited to avoid singularities and extend the rotational workspace. The architecture is described and the associated kinematic relationships are presented. Solutions for the inverse kinematics are given, as well as strategies to take into account the limitations of the mechanism such as mechanical interferences and velocity limits of the actuators while controlling the redundant degrees of freedom.
利用6+3自由度并联机构的运动冗余
提出了一种运动冗余并联机构的轨迹规划方法。该机构的结构与著名的Gough-Stewart平台相似,并保留了其优点,即连接基座和移动平台的构件仅承受拉伸/压缩载荷。利用运动冗余来避免奇异性并扩展旋转工作空间。描述了该系统的结构,并给出了相关的运动学关系。给出了机构的运动学逆解,以及在控制冗余自由度时考虑机构的机械干扰和执行机构速度限制等限制的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信