Affect recognition using simplistic 2D skeletal features from the upper body movement

Saba Baloch, Syed A. R. Syed Abu Bakar, M. Mokji, Saima Waseem, Adel Hafeezallah
{"title":"Affect recognition using simplistic 2D skeletal features from the upper body movement","authors":"Saba Baloch, Syed A. R. Syed Abu Bakar, M. Mokji, Saima Waseem, Adel Hafeezallah","doi":"10.1145/3582099.3582115","DOIUrl":null,"url":null,"abstract":"Over the past two decades, affective computing has garnered considerable attention. However, affective computing using body modality is still in its initial stages. Body affect detection using 3D skeletal data or motion capture data has seen some progress and produced promising results, but such advancement using RGB videos is yet to be achieved. In this paper, using OpenPose, 2D skeletal data is extracted from RGB videos. Joint location and joint angle features from MPIIEmo and GEMEP datasets are used to efficiently recognize affective states of angry, happy, sad, and surprise.","PeriodicalId":222372,"journal":{"name":"Proceedings of the 2022 5th Artificial Intelligence and Cloud Computing Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th Artificial Intelligence and Cloud Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582099.3582115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past two decades, affective computing has garnered considerable attention. However, affective computing using body modality is still in its initial stages. Body affect detection using 3D skeletal data or motion capture data has seen some progress and produced promising results, but such advancement using RGB videos is yet to be achieved. In this paper, using OpenPose, 2D skeletal data is extracted from RGB videos. Joint location and joint angle features from MPIIEmo and GEMEP datasets are used to efficiently recognize affective states of angry, happy, sad, and surprise.
影响识别使用简单的2D骨骼特征从上半身的运动
在过去的二十年里,情感计算获得了相当大的关注。然而,基于身体模态的情感计算还处于起步阶段。使用3D骨骼数据或动作捕捉数据的身体影响检测已经取得了一些进展并产生了有希望的结果,但使用RGB视频的这种进步尚未实现。本文使用OpenPose,从RGB视频中提取二维骨骼数据。利用MPIIEmo和GEMEP数据集的关节位置和关节角度特征,有效识别愤怒、快乐、悲伤和惊讶等情感状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信