Interactive Elicitation of Knowledge on Feature Relevance Improves Predictions in Small Data Sets

L. Micallef, Iiris Sundin, P. Marttinen, Muhammad Ammad-ud-din, Tomi Peltola, Marta Soare, Giulio Jacucci, Samuel Kaski
{"title":"Interactive Elicitation of Knowledge on Feature Relevance Improves Predictions in Small Data Sets","authors":"L. Micallef, Iiris Sundin, P. Marttinen, Muhammad Ammad-ud-din, Tomi Peltola, Marta Soare, Giulio Jacucci, Samuel Kaski","doi":"10.1145/3025171.3025181","DOIUrl":null,"url":null,"abstract":"Providing accurate predictions is challenging for machine learning algorithms when the number of features is larger than the number of samples in the data. Prior knowledge can improve machine learning models by indicating relevant variables and parameter values. Yet, this prior knowledge is often tacit and only available from domain experts. We present a novel approach that uses interactive visualization to elicit the tacit prior knowledge and uses it to improve the accuracy of prediction models. The main component of our approach is a user model that models the domain expert's knowledge of the relevance of different features for a prediction task. In particular, based on the expert's earlier input, the user model guides the selection of the features on which to elicit user's knowledge next. The results of a controlled user study show that the user model significantly improves prior knowledge elicitation and prediction accuracy, when predicting the relative citation counts of scientific documents in a specific domain.","PeriodicalId":166632,"journal":{"name":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3025171.3025181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Providing accurate predictions is challenging for machine learning algorithms when the number of features is larger than the number of samples in the data. Prior knowledge can improve machine learning models by indicating relevant variables and parameter values. Yet, this prior knowledge is often tacit and only available from domain experts. We present a novel approach that uses interactive visualization to elicit the tacit prior knowledge and uses it to improve the accuracy of prediction models. The main component of our approach is a user model that models the domain expert's knowledge of the relevance of different features for a prediction task. In particular, based on the expert's earlier input, the user model guides the selection of the features on which to elicit user's knowledge next. The results of a controlled user study show that the user model significantly improves prior knowledge elicitation and prediction accuracy, when predicting the relative citation counts of scientific documents in a specific domain.
特征相关性知识的交互式启发改进了小数据集的预测
当特征数量大于数据中的样本数量时,提供准确的预测对于机器学习算法来说是具有挑战性的。先验知识可以通过指示相关变量和参数值来改进机器学习模型。然而,这种先验知识通常是隐性的,只能从领域专家那里获得。本文提出了一种利用交互式可视化技术提取隐性先验知识的新方法,并利用它来提高预测模型的准确性。我们方法的主要组成部分是一个用户模型,该模型为预测任务建模领域专家对不同特征相关性的知识。特别是,基于专家的早期输入,用户模型指导选择下一步要引出用户知识的特征。一项受控用户研究结果表明,在预测特定领域科学文献的相对被引次数时,用户模型显著提高了先验知识的提取和预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信