A Clustered Federated Learning Approach for Estimating the Quality of Experience of Web Users

Simone Porcu, Alessandro Floris, L. Atzori
{"title":"A Clustered Federated Learning Approach for Estimating the Quality of Experience of Web Users","authors":"Simone Porcu, Alessandro Floris, L. Atzori","doi":"10.1109/ICASSPW59220.2023.10193530","DOIUrl":null,"url":null,"abstract":"In this paper, we present FedCLWAvg, a novel clustered Federated Learning (FL) approach for estimating the Quality of Experience (QoE) of Web users. FedCLWAvg performs clustering on the weights of the trained local models (CLW stands for clustered weights) to identify users with similar data distribution. In the context of QoE modelling, the hypothesis is that personal differences (in terms of perceived QoE for the same stimuli) between groups of users are reflected in different weights of the trained local models. Then, each identified cluster learns its own model using the FedAvg algorithm. To validate our approach, we used the Web QoE dataset including the subjective quality of 3,400 Web browsing sessions identified by the measurement of 9 Web session features. Experimental results have shown that FedCLWAvg achieved greater QoE estimation performance than the classical FedAvg algorithm in terms of mean accuracy and recall, F1-score, and precision computed for the single quality scores.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present FedCLWAvg, a novel clustered Federated Learning (FL) approach for estimating the Quality of Experience (QoE) of Web users. FedCLWAvg performs clustering on the weights of the trained local models (CLW stands for clustered weights) to identify users with similar data distribution. In the context of QoE modelling, the hypothesis is that personal differences (in terms of perceived QoE for the same stimuli) between groups of users are reflected in different weights of the trained local models. Then, each identified cluster learns its own model using the FedAvg algorithm. To validate our approach, we used the Web QoE dataset including the subjective quality of 3,400 Web browsing sessions identified by the measurement of 9 Web session features. Experimental results have shown that FedCLWAvg achieved greater QoE estimation performance than the classical FedAvg algorithm in terms of mean accuracy and recall, F1-score, and precision computed for the single quality scores.
一种估计Web用户体验质量的聚类联邦学习方法
本文提出了一种新的聚类联邦学习(FL)方法fedclwag,用于估计Web用户的体验质量(QoE)。FedCLWAvg对训练好的局部模型的权重执行聚类(CLW代表聚类权重),以识别具有相似数据分布的用户。在QoE建模的背景下,假设用户组之间的个人差异(就相同刺激的感知QoE而言)反映在训练的局部模型的不同权重上。然后,每个识别的集群使用fedag算法学习自己的模型。为了验证我们的方法,我们使用了Web QoE数据集,其中包括通过测量9个Web会话特征识别的3,400个Web浏览会话的主观质量。实验结果表明,FedCLWAvg在平均准确率和召回率、f1分数以及单个质量分数的计算精度方面都比经典的fedag算法取得了更高的QoE估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信