COVID-19 Prediction Using Time Series Models

Deepthi A R, I. M
{"title":"COVID-19 Prediction Using Time Series Models","authors":"Deepthi A R, I. M","doi":"10.1109/ICAC3N56670.2022.10074595","DOIUrl":null,"url":null,"abstract":"Real-time data has evolved to become an integral part of understanding events across different timelines. Machine Learning uses different varieties of algorithms to determine the relationship between sets of data spread across timelines, visualize the current situation, and forecast the future, which is the most important aspect. Due to the breakout of COVID-19, a novel coronavirus, the entire planet is currently experiencing a disastrous crisis. At this time, the SARS-CoV-2 virus has proven to be a possible hazard to human life. The ARIMA Model i.e., Autoregressive Integrated Moving Average is compared with Facebook’s Prophet and VARMAX model to foretell the future. The dataset is divided into the training and testing set. The size of the COVID-19 dataset is relatively small as it is a pandemic that occurred recently, due to which much of the data is used for training purposes and the last twelve days have been used for testing and validating the model. The model is trained and fits on the training data set. The algorithms are now ready to anticipate future forecasts after it has been tested and trained. The models also record the predicted and actual values, allowing them to improve their accuracy in the future. In this paper, the results of the ARIMA model are compared against Prophet and VARMAX which are other popular machine learning time series models. For the ease of visualization of covid trends, a dashboard is built using Python’s Plotly and Dash and has been deployed using Voila.","PeriodicalId":342573,"journal":{"name":"2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC3N56670.2022.10074595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time data has evolved to become an integral part of understanding events across different timelines. Machine Learning uses different varieties of algorithms to determine the relationship between sets of data spread across timelines, visualize the current situation, and forecast the future, which is the most important aspect. Due to the breakout of COVID-19, a novel coronavirus, the entire planet is currently experiencing a disastrous crisis. At this time, the SARS-CoV-2 virus has proven to be a possible hazard to human life. The ARIMA Model i.e., Autoregressive Integrated Moving Average is compared with Facebook’s Prophet and VARMAX model to foretell the future. The dataset is divided into the training and testing set. The size of the COVID-19 dataset is relatively small as it is a pandemic that occurred recently, due to which much of the data is used for training purposes and the last twelve days have been used for testing and validating the model. The model is trained and fits on the training data set. The algorithms are now ready to anticipate future forecasts after it has been tested and trained. The models also record the predicted and actual values, allowing them to improve their accuracy in the future. In this paper, the results of the ARIMA model are compared against Prophet and VARMAX which are other popular machine learning time series models. For the ease of visualization of covid trends, a dashboard is built using Python’s Plotly and Dash and has been deployed using Voila.
利用时间序列模型预测COVID-19
实时数据已经发展成为跨越不同时间线理解事件的一个组成部分。机器学习使用不同种类的算法来确定跨时间线分布的数据集之间的关系,可视化当前情况,并预测未来,这是最重要的方面。由于新型冠状病毒COVID-19的爆发,整个地球正在经历一场灾难性的危机。此时,SARS-CoV-2病毒已被证明可能危害人类生命。ARIMA模型即自回归综合移动平均,与Facebook的Prophet和VARMAX模型进行比较,预测未来。数据集分为训练集和测试集。COVID-19数据集的规模相对较小,因为它是最近发生的大流行,因此大部分数据用于培训目的,过去12天用于测试和验证模型。该模型被训练并拟合到训练数据集上。经过测试和训练,算法现在已经准备好预测未来的预测。这些模型还记录了预测值和实际值,使它们能够在未来提高准确性。本文将ARIMA模型的结果与其他常用的机器学习时间序列模型Prophet和VARMAX进行了比较。为了方便可视化covid趋势,使用Python的Plotly和Dash构建了一个仪表板,并使用Voila进行了部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信