EM Algorithm Based MAP Channel Estimation for Multi-Cell Massive MIMO Systems

Senol Sancar, B. Karakaya
{"title":"EM Algorithm Based MAP Channel Estimation for Multi-Cell Massive MIMO Systems","authors":"Senol Sancar, B. Karakaya","doi":"10.1109/BlackSeaCom.2018.8433697","DOIUrl":null,"url":null,"abstract":"This paper represents an efficient expectation-maximization (EM) algorithm based maximum a posteriori (MAP) channel estimation method for multi-cell massive multiple input multiple output (MIMO) systems. MAP channel estimation method requires conjugate transpose of a τ x K pilot matrix where is the number of pilot symbols per user and K is the number of single antenna users. Conjugate transpose of large-size matrix increases computational complexity. The proposed method estimates the channel iteratively and converges to the same mean square error (MSE) performance of the MAP estimator with the increasing number of iterations. Consequently, the proposed method with low-rank approximation avoids conjugate transpose of large-size matrix and hence reduces the computational complexity significantly,","PeriodicalId":351647,"journal":{"name":"2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BlackSeaCom.2018.8433697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper represents an efficient expectation-maximization (EM) algorithm based maximum a posteriori (MAP) channel estimation method for multi-cell massive multiple input multiple output (MIMO) systems. MAP channel estimation method requires conjugate transpose of a τ x K pilot matrix where is the number of pilot symbols per user and K is the number of single antenna users. Conjugate transpose of large-size matrix increases computational complexity. The proposed method estimates the channel iteratively and converges to the same mean square error (MSE) performance of the MAP estimator with the increasing number of iterations. Consequently, the proposed method with low-rank approximation avoids conjugate transpose of large-size matrix and hence reduces the computational complexity significantly,
基于EM算法的多小区大规模MIMO系统MAP信道估计
提出了一种基于最大后验(MAP)的高效期望最大化(EM)算法的多小区海量多输入多输出(MIMO)系统信道估计方法。MAP信道估计方法需要τ x K导频矩阵的共轭转置,其中为每个用户的导频符号数,K为单天线用户数。大尺寸矩阵的共轭转置增加了计算复杂度。该方法迭代估计信道,并随着迭代次数的增加收敛到与MAP估计器相同的均方误差(MSE)性能。因此,本文提出的低秩近似方法避免了大尺寸矩阵的共轭转置,从而大大降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信