Stable Fractional Matchings

I. Caragiannis, Aris Filos-Ratsikas, Panagiotis A. Kanellopoulos, Rohit Vaish
{"title":"Stable Fractional Matchings","authors":"I. Caragiannis, Aris Filos-Ratsikas, Panagiotis A. Kanellopoulos, Rohit Vaish","doi":"10.1145/3328526.3329637","DOIUrl":null,"url":null,"abstract":"We study a generalization of the classical stable matching problem that allows for cardinal preferences (as opposed to ordinal) and fractional matchings (as opposed to integral). After observing that, in this cardinal setting, stable fractional matchings can have much higher social welfare than stable integral ones, our goal is to understand the computational complexity of finding an optimal (i.e., welfare-maximizing) or nearly-optimal stable fractional matching. We present simple approximation algorithms for this problem with weak welfare guarantees and, rather unexpectedly, we furthermore show that achieving better approximations is hard. This computational hardness persists even for approximate stability. To the best of our knowledge, these are the first computational complexity results for stable fractional matchings. En route to these results, we provide a number of structural observations.","PeriodicalId":416173,"journal":{"name":"Proceedings of the 2019 ACM Conference on Economics and Computation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328526.3329637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We study a generalization of the classical stable matching problem that allows for cardinal preferences (as opposed to ordinal) and fractional matchings (as opposed to integral). After observing that, in this cardinal setting, stable fractional matchings can have much higher social welfare than stable integral ones, our goal is to understand the computational complexity of finding an optimal (i.e., welfare-maximizing) or nearly-optimal stable fractional matching. We present simple approximation algorithms for this problem with weak welfare guarantees and, rather unexpectedly, we furthermore show that achieving better approximations is hard. This computational hardness persists even for approximate stability. To the best of our knowledge, these are the first computational complexity results for stable fractional matchings. En route to these results, we provide a number of structural observations.
稳定分数匹配
我们研究了经典稳定匹配问题的推广,该问题允许基数偏好(而不是序数)和分数匹配(而不是积分)。观察到,在这个基数设置中,稳定的分数匹配可以比稳定的积分匹配具有更高的社会福利,我们的目标是了解找到最优(即福利最大化)或接近最优的稳定分数匹配的计算复杂性。我们提出了这个具有弱福利保证的问题的简单近似算法,而且出乎意料的是,我们进一步表明实现更好的近似是困难的。即使在近似稳定的情况下,这种计算硬度仍然存在。据我们所知,这些是稳定分数匹配的第一个计算复杂度结果。在得出这些结果的过程中,我们提供了一些结构观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信