Phoneme dependent inter-session variability reduction for speaker verification

Haoze Lu, Wenbin Zhang, Y. Horiuchi, S. Kuroiwa
{"title":"Phoneme dependent inter-session variability reduction for speaker verification","authors":"Haoze Lu, Wenbin Zhang, Y. Horiuchi, S. Kuroiwa","doi":"10.1504/IJBM.2015.070922","DOIUrl":null,"url":null,"abstract":"GMM-UBM super-vectors will potentially lead to worse modelling for speaker verification due to the inter-session variability, especially when a small amount of training utterances were available. In this study, we propose a phoneme dependent method to suppress the inter-session variability. A speaker's model can be represented by several various phoneme Gaussian mixture models. Each of them covers an individual phoneme whose inter-session variability can be constrained in an inter-session independent subspace constructed by principal component analysis PCA, and it uses corpus uttered by a single speaker that has been recorded over a long period. SVM-based experiments performed using a large corpus, constructed by the National Research Institute of Police Science NRIPS to evaluate Japanese speaker recognition, and demonstrate the improvements gained from the proposed method.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBM.2015.070922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

GMM-UBM super-vectors will potentially lead to worse modelling for speaker verification due to the inter-session variability, especially when a small amount of training utterances were available. In this study, we propose a phoneme dependent method to suppress the inter-session variability. A speaker's model can be represented by several various phoneme Gaussian mixture models. Each of them covers an individual phoneme whose inter-session variability can be constrained in an inter-session independent subspace constructed by principal component analysis PCA, and it uses corpus uttered by a single speaker that has been recorded over a long period. SVM-based experiments performed using a large corpus, constructed by the National Research Institute of Police Science NRIPS to evaluate Japanese speaker recognition, and demonstrate the improvements gained from the proposed method.
针对说话人验证的音素依赖性会话间变异性减少
由于会话间的可变性,GMM-UBM超级向量可能会导致说话人验证的糟糕建模,特别是当可用的训练话语数量很少时。在这项研究中,我们提出了一种音素依赖的方法来抑制会话间变异。一个说话人的模型可以用几个不同的音素高斯混合模型来表示。每个音素都包含一个单独的音素,这些音素的会话间变异性可以被约束在一个由主成分分析PCA构建的会话间独立子空间中,并且它使用单个说话人长时间录制的语料库。基于支持向量机的实验使用由国家警察科学研究所NRIPS构建的大型语料库来评估日语说话人识别,并证明了该方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信