Effect of decay functions on the generalization ability of TWDRLS algorithms

Yong Xu, Kwok-wo Wong
{"title":"Effect of decay functions on the generalization ability of TWDRLS algorithms","authors":"Yong Xu, Kwok-wo Wong","doi":"10.1109/ICNNSP.2003.1279202","DOIUrl":null,"url":null,"abstract":"Artificial neural networks trained with a regularization term in the energy function have been shown to perform well in improving the generalization ability and reducing the complexity of the network. In a previous study, we proposed a new version of the TWDRLS algorithm with a generalized regularizer in the energy function to make it suitable for target learning. In this paper, we introduce three new decay functions to study the effect of the shape and intensity of the decay functions on the generalization ability of the trained network. Computer simulations show that the regularizer with a weak decaying effect for small weights but a relatively strong decaying effect for large ones makes the networks exhibit a better generalization ability.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1279202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Artificial neural networks trained with a regularization term in the energy function have been shown to perform well in improving the generalization ability and reducing the complexity of the network. In a previous study, we proposed a new version of the TWDRLS algorithm with a generalized regularizer in the energy function to make it suitable for target learning. In this paper, we introduce three new decay functions to study the effect of the shape and intensity of the decay functions on the generalization ability of the trained network. Computer simulations show that the regularizer with a weak decaying effect for small weights but a relatively strong decaying effect for large ones makes the networks exhibit a better generalization ability.
衰减函数对TWDRLS算法泛化能力的影响
在能量函数中加入正则化项训练的人工神经网络在提高泛化能力和降低网络复杂度方面表现良好。在之前的研究中,我们提出了一种新版本的TWDRLS算法,在能量函数中加入了广义正则化器,使其适合于目标学习。本文引入了三种新的衰减函数,研究了衰减函数的形状和强度对训练网络泛化能力的影响。计算机仿真结果表明,该正则器对小权重的衰减作用较弱,而对大权重的衰减作用较强,使得网络具有较好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信