A Low-voltage Non-binary Cyclic ADC using Fully Differential Ring Amplifier

Kenta Mori, Eiki Kayama, Taichi Maebou, Yuan-ying Chen, H. San, T. Matsuura, M. Hotta
{"title":"A Low-voltage Non-binary Cyclic ADC using Fully Differential Ring Amplifier","authors":"Kenta Mori, Eiki Kayama, Taichi Maebou, Yuan-ying Chen, H. San, T. Matsuura, M. Hotta","doi":"10.1109/ISPACS51563.2021.9651059","DOIUrl":null,"url":null,"abstract":"This paper presents a non-binary cyclic analog-to-digital converter (ADC) with fully differential ring amplifier in 65nm SOTB CMOS technology for low power supply voltage applications. By utilizing substrate voltage control technique of SOTB CMOS, high gain dynamic amplifier is realized at low supply voltage. In a cyclic ADC with proposed fully differential ring amplifier, the number of reset mode can be reduced because the reset mode is provided only once per AD conversion instead of each conversion step. And hence, offset cancellation capacitors in the multiplying digital-to-analog converter (MDAC) with ring amplifier switched-capacitor (SC) circuits can be removed. As the results, not only the active area for capacitors, but also input referred noise of MDAC can be reduced. Proposed non-binary cyclic ADC with fully differential ring amplifier can be realized at supply voltage as low as Vdd =0.75V. SPICE simulation results confirm the feasibility and reliability of proposed technique to realize a high-resolution ADC at low supply voltage.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"122 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a non-binary cyclic analog-to-digital converter (ADC) with fully differential ring amplifier in 65nm SOTB CMOS technology for low power supply voltage applications. By utilizing substrate voltage control technique of SOTB CMOS, high gain dynamic amplifier is realized at low supply voltage. In a cyclic ADC with proposed fully differential ring amplifier, the number of reset mode can be reduced because the reset mode is provided only once per AD conversion instead of each conversion step. And hence, offset cancellation capacitors in the multiplying digital-to-analog converter (MDAC) with ring amplifier switched-capacitor (SC) circuits can be removed. As the results, not only the active area for capacitors, but also input referred noise of MDAC can be reduced. Proposed non-binary cyclic ADC with fully differential ring amplifier can be realized at supply voltage as low as Vdd =0.75V. SPICE simulation results confirm the feasibility and reliability of proposed technique to realize a high-resolution ADC at low supply voltage.
一种采用全差分环放大器的低压非二进制循环ADC
本文提出了一种采用65nm SOTB CMOS技术的全差分环放大器的非二进制循环模数转换器(ADC),用于低电源电压应用。利用SOTB CMOS衬底电压控制技术,实现了低电源电压下的高增益动态放大器。在采用全差分环放大器的循环ADC中,复位模式的数量可以减少,因为复位模式在每个AD转换中只提供一次,而不是每个转换步骤。因此,带环形放大器开关电容(SC)电路的乘法数模转换器(MDAC)中的偏移抵消电容可以被移除。这样不仅可以减小电容器的有源面积,而且可以降低MDAC的输入参考噪声。所提出的带全差分环放大器的非二进制循环ADC可以在低至Vdd =0.75V的电源电压下实现。SPICE仿真结果验证了该方法在低电源电压下实现高分辨率ADC的可行性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信