On the exponential decay rate of the tail of a queue length distribution

K. Nakagawa
{"title":"On the exponential decay rate of the tail of a queue length distribution","authors":"K. Nakagawa","doi":"10.1109/ISIT.2001.936067","DOIUrl":null,"url":null,"abstract":"We give a sufficient condition for the exponential decay of the tail of a discrete probability distribution. We focus on analytic properties of the probability generating function of a discrete probability distribution, especially the radius of convergence and the number of poles on the circle of convergence. The result is applied to an M/G/1 type Markov chain to provide a weak sufficient condition for the exponential decay of the tail of the stationary distribution. We give a counter example for the Proposition 1 of Glynn and Whitt (1994), which insists a \"better result\" than in this paper. Furthermore, we give an example of an M/G/1 type Markov chain such that the tail of its stationary distribution does not decay exponentially.","PeriodicalId":433761,"journal":{"name":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2001.936067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give a sufficient condition for the exponential decay of the tail of a discrete probability distribution. We focus on analytic properties of the probability generating function of a discrete probability distribution, especially the radius of convergence and the number of poles on the circle of convergence. The result is applied to an M/G/1 type Markov chain to provide a weak sufficient condition for the exponential decay of the tail of the stationary distribution. We give a counter example for the Proposition 1 of Glynn and Whitt (1994), which insists a "better result" than in this paper. Furthermore, we give an example of an M/G/1 type Markov chain such that the tail of its stationary distribution does not decay exponentially.
关于队列长度分布尾部的指数衰减率
给出了离散概率分布尾部指数衰减的一个充分条件。重点讨论离散概率分布的概率生成函数的解析性质,特别是收敛半径和收敛圆上的极点数。将结果应用于M/G/1型马尔可夫链,为平稳分布尾部指数衰减提供了一个弱充分条件。我们以Glynn and Whitt(1994)的Proposition 1作为反例,它坚持比本文“更好的结果”。进一步,我们给出了M/G/1型马尔可夫链的一个例子,使其平稳分布的尾部不呈指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信