Mixed Proper Orthogonal Decomposition with Harmonic Approximation for Parameterized Order Reduction of Electromagnetic Models

R. Torchio, A. Zanco, F. Lucchini, P. Alotto, S. Grivet-Talocia
{"title":"Mixed Proper Orthogonal Decomposition with Harmonic Approximation for Parameterized Order Reduction of Electromagnetic Models","authors":"R. Torchio, A. Zanco, F. Lucchini, P. Alotto, S. Grivet-Talocia","doi":"10.1109/EMCEurope51680.2022.9901091","DOIUrl":null,"url":null,"abstract":"This paper presents some preliminary investigations on a hybrid Model Order Reduction approach for parameter-dependent electromagnetic systems. Starting from an integral equation formulation of the field problem, we introduce a first level of compression based on the well-established Proper Orthogonal Decomposition (POD). The result is a small-scale approximation of the full-order discrete field formulation, which retains an explicit dependence on the set of free parameters defining the geometry. The evaluation of the reduced model for arbitrary parameter configurations remains very expensive, as it requires the construction of the full system equations before its projection onto a lower-dimensional space. This problem is solved by constructing a surrogate macromodel of the parameterized reduced-order system through a multivariate Fourier approximation. Numerical results applied to a moving coil over a finite ground plane show model compression above 99% while preserving accuracy on currents and fields within 1%.","PeriodicalId":268262,"journal":{"name":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","volume":"77 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEurope51680.2022.9901091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents some preliminary investigations on a hybrid Model Order Reduction approach for parameter-dependent electromagnetic systems. Starting from an integral equation formulation of the field problem, we introduce a first level of compression based on the well-established Proper Orthogonal Decomposition (POD). The result is a small-scale approximation of the full-order discrete field formulation, which retains an explicit dependence on the set of free parameters defining the geometry. The evaluation of the reduced model for arbitrary parameter configurations remains very expensive, as it requires the construction of the full system equations before its projection onto a lower-dimensional space. This problem is solved by constructing a surrogate macromodel of the parameterized reduced-order system through a multivariate Fourier approximation. Numerical results applied to a moving coil over a finite ground plane show model compression above 99% while preserving accuracy on currents and fields within 1%.
电磁模型参数化降阶的调和逼近混合固有正交分解
本文对参数相关电磁系统的混合模型降阶方法进行了初步研究。从场问题的积分方程形式出发,引入了基于固有正交分解(POD)的一级压缩。结果是全阶离散场公式的小尺度近似,它保留了对定义几何的自由参数集的显式依赖。对于任意参数配置的简化模型的评估仍然非常昂贵,因为它需要在将其投影到低维空间之前构建完整的系统方程。通过多元傅里叶近似构造参数化降阶系统的代理宏模型,解决了这一问题。应用于有限地平面上的移动线圈的数值结果表明,模型压缩率超过99%,同时保持电流和场精度在1%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信