Learning Explainable Entity Resolution Algorithms for Small Business Data using SystemER

Kun Qian, D. Burdick, Sairam Gurajada, Lucian Popa
{"title":"Learning Explainable Entity Resolution Algorithms for Small Business Data using SystemER","authors":"Kun Qian, D. Burdick, Sairam Gurajada, Lucian Popa","doi":"10.1145/3336499.3338010","DOIUrl":null,"url":null,"abstract":"The 2019 FEIII CALI data challenge aims at linking different representations of the same real-world entities across multiple public datasets that collect identification and activity data about small to medium enterprises (SMEs) in California. We formalize this challenge as a learning-based entity resolution (ER) task, the goal of which is to learn a high-precision and high-recall pair-wise ER model that classifies small business entity pairs into matches and non-matches. Realistic ER tasks usually involve a pipeline of laborintensive and error-prone tasks, such as data preprocesing, gathering of training data, feature engineering, and model tuning. In this task, we apply an advanced human-in-the-loop system, named SystemER, to learn ER algorithms for SME entities. Powered by active learning and via a carefully designed user interface, SystemER can learn high-quality explainable ER algorithms with low human effort, while achieving high-accuracy on the datasets provided by the FEIII CALI data challenge.","PeriodicalId":148424,"journal":{"name":"Proceedings of the 5th Workshop on Data Science for Macro-modeling with Financial and Economic Datasets","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on Data Science for Macro-modeling with Financial and Economic Datasets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336499.3338010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The 2019 FEIII CALI data challenge aims at linking different representations of the same real-world entities across multiple public datasets that collect identification and activity data about small to medium enterprises (SMEs) in California. We formalize this challenge as a learning-based entity resolution (ER) task, the goal of which is to learn a high-precision and high-recall pair-wise ER model that classifies small business entity pairs into matches and non-matches. Realistic ER tasks usually involve a pipeline of laborintensive and error-prone tasks, such as data preprocesing, gathering of training data, feature engineering, and model tuning. In this task, we apply an advanced human-in-the-loop system, named SystemER, to learn ER algorithms for SME entities. Powered by active learning and via a carefully designed user interface, SystemER can learn high-quality explainable ER algorithms with low human effort, while achieving high-accuracy on the datasets provided by the FEIII CALI data challenge.
使用SystemER学习小型企业数据的可解释实体解析算法
2019年FEIII CALI数据挑战旨在连接多个公共数据集中相同现实世界实体的不同表示,这些数据集收集有关加州中小企业(SMEs)的识别和活动数据。我们将这一挑战形式化为基于学习的实体解析(ER)任务,其目标是学习一个高精度和高召回率的成对ER模型,该模型将小型企业实体对分类为匹配和不匹配。现实的ER任务通常涉及大量劳动密集型和容易出错的任务,例如数据预处理、训练数据的收集、特征工程和模型调优。在这项任务中,我们应用了一个先进的人在环系统,名为SystemER,来学习SME实体的ER算法。通过主动学习和精心设计的用户界面,SystemER可以学习高质量的可解释ER算法,只需很少的人力,同时在FEIII CALI数据挑战提供的数据集上实现高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信