Finite element modelling of rectangular concrete-filled steel tube stub columns incorporating high strength and ultra-high strength materials under concentric axial compression
{"title":"Finite element modelling of rectangular concrete-filled steel tube stub columns incorporating high strength and ultra-high strength materials under concentric axial compression","authors":"T. Son, Cuong Ngo-Huu, Dinh Van Thuat","doi":"10.31814/stce.huce(nuce)2021-15(4)-07","DOIUrl":null,"url":null,"abstract":"This study presents a unified approach to simulate the behavior of rectangular concrete-filled steel stub columns incorporating high strength and ultra-high strength materials subjected to concentric axial compression. The finite element model is developed based on Abaqus software, which is capable of accounting for geometrical nonlinearity, material plasticity, and interaction between multi-physics. The proposed model incorporates the influences of residual stress for welded-box steel sections and initial imperfection. A novel stress-strain relation of confined concrete is proposed to account for the composite action, which might increase the strength and ductility of infilled concrete under multi-axial compressive conditions. Various verification examples are conducted with wide ranges of geometrical and material properties. The simulation results show that the proposed model can accurately predict the ultimate strength, load-deformation relations, and failure mode of the experimental specimens.","PeriodicalId":387908,"journal":{"name":"Journal of Science and Technology in Civil Engineering (STCE) - HUCE","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology in Civil Engineering (STCE) - HUCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31814/stce.huce(nuce)2021-15(4)-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study presents a unified approach to simulate the behavior of rectangular concrete-filled steel stub columns incorporating high strength and ultra-high strength materials subjected to concentric axial compression. The finite element model is developed based on Abaqus software, which is capable of accounting for geometrical nonlinearity, material plasticity, and interaction between multi-physics. The proposed model incorporates the influences of residual stress for welded-box steel sections and initial imperfection. A novel stress-strain relation of confined concrete is proposed to account for the composite action, which might increase the strength and ductility of infilled concrete under multi-axial compressive conditions. Various verification examples are conducted with wide ranges of geometrical and material properties. The simulation results show that the proposed model can accurately predict the ultimate strength, load-deformation relations, and failure mode of the experimental specimens.