{"title":"Multiple potassium and chloride channels in the human colon carcinoma cell line SW1116.","authors":"R Etcheberrigaray, S Yedgar, E Rojas, H B Pollard","doi":"10.3109/09687689009025842","DOIUrl":null,"url":null,"abstract":"<p><p>SW1116 cells have a profound capacity for secreting mucin molecules bearing the Lewisa epitope. Mucin molecules with the same epitope have been found to be elevated in the serum of patients with cystic fibrosis, a disease with defective ion channels. We therefore decided to study ion channels in this cell line. In the present work, we report the presence of two K(+)-channels and two Cl(-)-channels in the apical membrane of SW1116 cells. One of the K(+)-channels has a large conductance (approximately 278 pS), anomalous rectifying properties, and is inactivated rapidly. The second type exhibited a linear I/V curve (19 pS), was voltage insensitive and inactivation was not observed. In cell-attached patches, spontaneous openings of chloride channels were seen with higher frequency than previously reported in other colon carcinoma cell lines or airway epithelial cells. Inside-out experiments allowed identification of two different Cl(-)-channels (Cl(-)-1 and Cl(-)-2). Both exhibited rectification, but in opposite directions, and both were insensitive to NIPAB.</p>","PeriodicalId":18448,"journal":{"name":"Membrane biochemistry","volume":"9 3","pages":"215-25"},"PeriodicalIF":0.0000,"publicationDate":"1990-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687689009025842","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687689009025842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
SW1116 cells have a profound capacity for secreting mucin molecules bearing the Lewisa epitope. Mucin molecules with the same epitope have been found to be elevated in the serum of patients with cystic fibrosis, a disease with defective ion channels. We therefore decided to study ion channels in this cell line. In the present work, we report the presence of two K(+)-channels and two Cl(-)-channels in the apical membrane of SW1116 cells. One of the K(+)-channels has a large conductance (approximately 278 pS), anomalous rectifying properties, and is inactivated rapidly. The second type exhibited a linear I/V curve (19 pS), was voltage insensitive and inactivation was not observed. In cell-attached patches, spontaneous openings of chloride channels were seen with higher frequency than previously reported in other colon carcinoma cell lines or airway epithelial cells. Inside-out experiments allowed identification of two different Cl(-)-channels (Cl(-)-1 and Cl(-)-2). Both exhibited rectification, but in opposite directions, and both were insensitive to NIPAB.