{"title":"Development of a snake robot moving in a small diameter pipe","authors":"Hocheol Shin, Kyungmin Jeong, J. Kwon","doi":"10.1109/ICCAS.2010.5669881","DOIUrl":null,"url":null,"abstract":"This paper presents a snake robot moving in a small diameter pipe. A snake robot is a multi-linked modular robot. The snake robot, KAEROT-snake IV consists of 11 2-DOF actuator modules, a head, and a tail module. Each of the 2-DOF actuator modules has two small DC motors and worm gear boxes to increase the torque output and an embedded motor controller. The snake robot can move in a small diameter pipe with a sequence of holding motion as well as with a sinusoidal motion. Some modules holds the robot itself by pressing outward to induce friction while the other modules move forward/backward and hold the robot at a more front/rear position. A sequence of holding moves the robot forward/backward in a small diameter pipe.","PeriodicalId":158687,"journal":{"name":"ICCAS 2010","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAS 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2010.5669881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
This paper presents a snake robot moving in a small diameter pipe. A snake robot is a multi-linked modular robot. The snake robot, KAEROT-snake IV consists of 11 2-DOF actuator modules, a head, and a tail module. Each of the 2-DOF actuator modules has two small DC motors and worm gear boxes to increase the torque output and an embedded motor controller. The snake robot can move in a small diameter pipe with a sequence of holding motion as well as with a sinusoidal motion. Some modules holds the robot itself by pressing outward to induce friction while the other modules move forward/backward and hold the robot at a more front/rear position. A sequence of holding moves the robot forward/backward in a small diameter pipe.