Low-cost, short-term electric load prediction using the α-β-γfilter

I. Stanciu, C. Șorândaru
{"title":"Low-cost, short-term electric load prediction using the α-β-γfilter","authors":"I. Stanciu, C. Șorândaru","doi":"10.1109/INES.2011.5954769","DOIUrl":null,"url":null,"abstract":"As the society evolves and the population grows, the demand for electrical energy increases. Search for new energy resources, increase the efficiency of the existing power plants, and cost minimization are actions to be taken. One way to reduce the cost is predicting the need for electricity. This problem is not new. This paper presents a low-cost method for short-term electric load prediction. After studying his stability, the algorithm is implemented in LabVIEW and a week of power data is used to test it and assess its performance.","PeriodicalId":414812,"journal":{"name":"2011 15th IEEE International Conference on Intelligent Engineering Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 15th IEEE International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2011.5954769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As the society evolves and the population grows, the demand for electrical energy increases. Search for new energy resources, increase the efficiency of the existing power plants, and cost minimization are actions to be taken. One way to reduce the cost is predicting the need for electricity. This problem is not new. This paper presents a low-cost method for short-term electric load prediction. After studying his stability, the algorithm is implemented in LabVIEW and a week of power data is used to test it and assess its performance.
利用α-β-γ滤波器进行低成本、短期电力负荷预测
随着社会的发展和人口的增长,对电能的需求也在增加。寻找新能源,提高现有电厂的效率,降低成本是必须采取的行动。降低成本的一种方法是预测电力需求。这个问题并不新鲜。本文提出了一种低成本的短期电力负荷预测方法。在研究了该算法的稳定性后,在LabVIEW中实现了该算法,并利用一周的功率数据对其进行了测试和性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信