{"title":"Stress Generation in Terfenol-D Using HBAR for NV Center Based Hybrid Sensor","authors":"Ashlesha Patil, K. Saha","doi":"10.1109/FCS.2018.8597442","DOIUrl":null,"url":null,"abstract":"The applications for nanoscale local stress sensing span a wide range of fields. The hybrid sensor we study here utilizes the ultrasensitive magnetic field response of the nitrogen vacancy center (NV-center) in diamond in conjunction with the magnetostrictive property of Terfenol-D. We propose and simulate a device model for the experimental verification of local nanoscale stress sensing. We generate spatially varying stress in Terfenol-D with the help of the high-overtone bulk acoustic resonator (HBAR) which is then converted to the magnetic field via the Villari effect. We calculate the stress tensor of Terfenol-D, which is then fed into micromagnetic simulator to obtain magnetic field experienced by the NV ceters.","PeriodicalId":180164,"journal":{"name":"2018 IEEE International Frequency Control Symposium (IFCS)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2018.8597442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The applications for nanoscale local stress sensing span a wide range of fields. The hybrid sensor we study here utilizes the ultrasensitive magnetic field response of the nitrogen vacancy center (NV-center) in diamond in conjunction with the magnetostrictive property of Terfenol-D. We propose and simulate a device model for the experimental verification of local nanoscale stress sensing. We generate spatially varying stress in Terfenol-D with the help of the high-overtone bulk acoustic resonator (HBAR) which is then converted to the magnetic field via the Villari effect. We calculate the stress tensor of Terfenol-D, which is then fed into micromagnetic simulator to obtain magnetic field experienced by the NV ceters.