{"title":"A new dual-material double-gate (DMDG) SOI MOSFET for nanoscale CMOS design","authors":"G. Reddy, M.J. Kumar","doi":"10.1109/ISDRS.2003.1272078","DOIUrl":null,"url":null,"abstract":"Double-gate (DG) SOI MOSFETs employing asymmetrical gate structure (front gate p/sup +/ poly and back gate n/sup +/ poly) are foreseen to be a solution to the scaling limits imposed by bulk MOSFETs. However, for channel lengths below 100 nm, the DG SOI MOSFET is not completely immune to the short-channel effects and in the main challenge in device design. In this paper a new dual-material double-gate (DMDG) SOI MOSFET to overcome this nanoscale regime while simultaneously achieving a higher transconductance and reduced drain induced barrier lowering compared to the DG SOI MOSFET is proposed using two-dimensional simulations. This article further demonstrates a considerable reduction in the peak electric field near the drain end, increased drain breakdown voltage and the desirable threshold voltage \"roll-up\" even for channel lengths far below 100 nm. The DMDG structure exhibits a step function in the surface potential along the channel. The I/sub D/-V/sub DS/ characteristics of both the devices are discussed.","PeriodicalId":369241,"journal":{"name":"International Semiconductor Device Research Symposium, 2003","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Semiconductor Device Research Symposium, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDRS.2003.1272078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Double-gate (DG) SOI MOSFETs employing asymmetrical gate structure (front gate p/sup +/ poly and back gate n/sup +/ poly) are foreseen to be a solution to the scaling limits imposed by bulk MOSFETs. However, for channel lengths below 100 nm, the DG SOI MOSFET is not completely immune to the short-channel effects and in the main challenge in device design. In this paper a new dual-material double-gate (DMDG) SOI MOSFET to overcome this nanoscale regime while simultaneously achieving a higher transconductance and reduced drain induced barrier lowering compared to the DG SOI MOSFET is proposed using two-dimensional simulations. This article further demonstrates a considerable reduction in the peak electric field near the drain end, increased drain breakdown voltage and the desirable threshold voltage "roll-up" even for channel lengths far below 100 nm. The DMDG structure exhibits a step function in the surface potential along the channel. The I/sub D/-V/sub DS/ characteristics of both the devices are discussed.