{"title":"A System-on-a-Chip Platform for Mixed-Criticality Applications","authors":"Armin Wasicek, C. E. Salloum, H. Kopetz","doi":"10.1109/ISORC.2010.43","DOIUrl":null,"url":null,"abstract":"High–integrity systems are deployed in order to realize safety–critical applications. To meet the rigorous requirements in this domain, these systems require a sophisticated approach to design, verfication, and certification. Not only safety consideration shave an impact on a product’s overall dependability, but also security has to be taken into account. In this paper we analyze the Time–Triggered System–on–Chip (TTSoC) architecture, which is a novel architecture for Multi–Processor System–on–Chip (MPSoC) devices, regarding its security properties. We discuss essential compliance criteria to the Multiple Independent Layers of Security (MILS) architecture, which is a industry–ready architecture for embedded high–integrity systems. We found that both architectures share intrinsic properties and we are able to show that the TTSoC architecture implements the core requirements of a MILS Separation Kernel and thus realizes its elementary security policies by design.","PeriodicalId":142767,"journal":{"name":"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2010.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
High–integrity systems are deployed in order to realize safety–critical applications. To meet the rigorous requirements in this domain, these systems require a sophisticated approach to design, verfication, and certification. Not only safety consideration shave an impact on a product’s overall dependability, but also security has to be taken into account. In this paper we analyze the Time–Triggered System–on–Chip (TTSoC) architecture, which is a novel architecture for Multi–Processor System–on–Chip (MPSoC) devices, regarding its security properties. We discuss essential compliance criteria to the Multiple Independent Layers of Security (MILS) architecture, which is a industry–ready architecture for embedded high–integrity systems. We found that both architectures share intrinsic properties and we are able to show that the TTSoC architecture implements the core requirements of a MILS Separation Kernel and thus realizes its elementary security policies by design.