Fusion under unknown correlation - covariance intersection as a special case

Lingji Chen, P. Arambel, Raman K. Mehra
{"title":"Fusion under unknown correlation - covariance intersection as a special case","authors":"Lingji Chen, P. Arambel, Raman K. Mehra","doi":"10.1109/ICIF.2002.1020908","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of fusing several random variables (RVs) with unknown correlations. A family of upper bounds on the resulting covariance matrix is given, and is shown to contain the upper bound offered by the covariance intersection (CI) algorithm proposed by Julier and Uhlmann (2000). For trace minimization, the optimal one in this family is better than the one obtained by CI except in some cases where they are equal. It is further proved that the best pair of combination gains that minimizes the above optimal-trace-in-the-family coincides with the one associated with the best value of omega in CL. Thus, the CI Algorithm provides a convenient one-dimensional parameterization for the optimal solution in the n-square dimensional space. The results are also extended to multiple RVs and partial estimates.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

This paper addresses the problem of fusing several random variables (RVs) with unknown correlations. A family of upper bounds on the resulting covariance matrix is given, and is shown to contain the upper bound offered by the covariance intersection (CI) algorithm proposed by Julier and Uhlmann (2000). For trace minimization, the optimal one in this family is better than the one obtained by CI except in some cases where they are equal. It is further proved that the best pair of combination gains that minimizes the above optimal-trace-in-the-family coincides with the one associated with the best value of omega in CL. Thus, the CI Algorithm provides a convenient one-dimensional parameterization for the optimal solution in the n-square dimensional space. The results are also extended to multiple RVs and partial estimates.
作为一种特殊情况,未知相关协方差交点下的融合
本文研究了具有未知相关性的多个随机变量的融合问题。给出了所得到的协方差矩阵的一组上界,并证明其包含由Julier和Uhlmann(2000)提出的协方差相交(CI)算法提供的上界。对于迹极小化,除了某些相等的情况外,该族中的最优值优于CI得到的最优值。进一步证明了使上述最优族迹最小的最佳组合增益对与CL中omega的最佳值相吻合。因此,CI算法为n平方维空间中的最优解提供了方便的一维参数化。结果也推广到多个rv和部分估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信