Simulations and experiments of ZNN for online quadratic programming applied to manipulator inverse kinematics

Yunong Zhang, Ying Wang, Long Jin, Junwei Chen, Yiwen Yang
{"title":"Simulations and experiments of ZNN for online quadratic programming applied to manipulator inverse kinematics","authors":"Yunong Zhang, Ying Wang, Long Jin, Junwei Chen, Yiwen Yang","doi":"10.1109/ICIST.2013.6747548","DOIUrl":null,"url":null,"abstract":"Zhang neural network (ZNN), a special class of recurrent neural network (RNN), has recently been introduced for time-varying convex quadratic-programming (QP) problems solving. In this paper, a drift-free robotic criterion is exploited in the form of a quadratic performance index. This repetitive-motion-planning (RMP) scheme can be reformulated into a time-varying quadratic program subject to a linear-equality constraint. As QP real-time solvers, two recurrent neural networks, i.e., Zhang neural network and gradient neural network (GNN), are then developed for the online solution of the time-varying QP problem. Computer simulations performed on a four-link robot manipulator demonstrate the superiority of the ZNN solver, compared to the GNN one. Moreover, robotic experiments conducted on a six degrees-of-freedom (DOF) motor-driven push-rod (MDPR) redundant robot manipulator substantiate the physical realizability and effectiveness of this RMP scheme using the ZNN solver.","PeriodicalId":415759,"journal":{"name":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2013.6747548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Zhang neural network (ZNN), a special class of recurrent neural network (RNN), has recently been introduced for time-varying convex quadratic-programming (QP) problems solving. In this paper, a drift-free robotic criterion is exploited in the form of a quadratic performance index. This repetitive-motion-planning (RMP) scheme can be reformulated into a time-varying quadratic program subject to a linear-equality constraint. As QP real-time solvers, two recurrent neural networks, i.e., Zhang neural network and gradient neural network (GNN), are then developed for the online solution of the time-varying QP problem. Computer simulations performed on a four-link robot manipulator demonstrate the superiority of the ZNN solver, compared to the GNN one. Moreover, robotic experiments conducted on a six degrees-of-freedom (DOF) motor-driven push-rod (MDPR) redundant robot manipulator substantiate the physical realizability and effectiveness of this RMP scheme using the ZNN solver.
ZNN在线二次规划应用于机械臂逆运动学的仿真与实验
张神经网络(ZNN)是一类特殊的递归神经网络(RNN),近年来被引入求解时变凸二次规划(QP)问题。本文以二次型性能指标的形式提出了一种无漂移机器人准则。这种重复运动规划(RMP)方案可以被重新表述为一个受线性等式约束的时变二次规划。作为QP的实时求解器,我们开发了两种递归神经网络,即张神经网络和梯度神经网络(GNN),用于在线求解时变QP问题。在一个四连杆机械臂上进行了计算机仿真,验证了ZNN求解器与GNN求解器相比的优越性。利用ZNN求解器对六自由度电机驱动推杆(MDPR)冗余机器人机械手进行了实验,验证了该方案的物理可实现性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信