Yunong Zhang, Ying Wang, Long Jin, Junwei Chen, Yiwen Yang
{"title":"Simulations and experiments of ZNN for online quadratic programming applied to manipulator inverse kinematics","authors":"Yunong Zhang, Ying Wang, Long Jin, Junwei Chen, Yiwen Yang","doi":"10.1109/ICIST.2013.6747548","DOIUrl":null,"url":null,"abstract":"Zhang neural network (ZNN), a special class of recurrent neural network (RNN), has recently been introduced for time-varying convex quadratic-programming (QP) problems solving. In this paper, a drift-free robotic criterion is exploited in the form of a quadratic performance index. This repetitive-motion-planning (RMP) scheme can be reformulated into a time-varying quadratic program subject to a linear-equality constraint. As QP real-time solvers, two recurrent neural networks, i.e., Zhang neural network and gradient neural network (GNN), are then developed for the online solution of the time-varying QP problem. Computer simulations performed on a four-link robot manipulator demonstrate the superiority of the ZNN solver, compared to the GNN one. Moreover, robotic experiments conducted on a six degrees-of-freedom (DOF) motor-driven push-rod (MDPR) redundant robot manipulator substantiate the physical realizability and effectiveness of this RMP scheme using the ZNN solver.","PeriodicalId":415759,"journal":{"name":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2013.6747548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Zhang neural network (ZNN), a special class of recurrent neural network (RNN), has recently been introduced for time-varying convex quadratic-programming (QP) problems solving. In this paper, a drift-free robotic criterion is exploited in the form of a quadratic performance index. This repetitive-motion-planning (RMP) scheme can be reformulated into a time-varying quadratic program subject to a linear-equality constraint. As QP real-time solvers, two recurrent neural networks, i.e., Zhang neural network and gradient neural network (GNN), are then developed for the online solution of the time-varying QP problem. Computer simulations performed on a four-link robot manipulator demonstrate the superiority of the ZNN solver, compared to the GNN one. Moreover, robotic experiments conducted on a six degrees-of-freedom (DOF) motor-driven push-rod (MDPR) redundant robot manipulator substantiate the physical realizability and effectiveness of this RMP scheme using the ZNN solver.