A New ML-based AFIB Detector

Stojancho Tudjarski, Tomislav Ignjatov, Marjan Gusev
{"title":"A New ML-based AFIB Detector","authors":"Stojancho Tudjarski, Tomislav Ignjatov, Marjan Gusev","doi":"10.1109/TELFOR52709.2021.9653409","DOIUrl":null,"url":null,"abstract":"Objectives: This paper aims to develop a model for detecting Atrial Fibrillation (AFIB) in a single-channel electrocardiogram.Methodology: The applied Machine Learning methods are XGBoost and Random Forest. Training and testing split was realized by splitting the patients 70% for training and 30% for testing. Features included annotations for heartbeats, intervals between neighboring heartbeats, Shannon entropy, and Fluctuation index by designing a moving window with predefined length.Data: Standard ECG benchmarks were used for training and testing from MIT-BIH Arrhythmia [1] and MIT-BIH Atrial Fibrillation[2] datasets.Conclusion: Experiments were done with different window sizes and different hyperparameters. The best results were achieved from the 41 Beat window, with XGBoost achieving the best performance of 99% with an F1 score of 99%.","PeriodicalId":330449,"journal":{"name":"2021 29th Telecommunications Forum (TELFOR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 29th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR52709.2021.9653409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Objectives: This paper aims to develop a model for detecting Atrial Fibrillation (AFIB) in a single-channel electrocardiogram.Methodology: The applied Machine Learning methods are XGBoost and Random Forest. Training and testing split was realized by splitting the patients 70% for training and 30% for testing. Features included annotations for heartbeats, intervals between neighboring heartbeats, Shannon entropy, and Fluctuation index by designing a moving window with predefined length.Data: Standard ECG benchmarks were used for training and testing from MIT-BIH Arrhythmia [1] and MIT-BIH Atrial Fibrillation[2] datasets.Conclusion: Experiments were done with different window sizes and different hyperparameters. The best results were achieved from the 41 Beat window, with XGBoost achieving the best performance of 99% with an F1 score of 99%.
一种新的基于ml的AFIB检测器
目的:建立一种单通道心电图检测心房颤动(AFIB)的模型。方法:应用的机器学习方法是XGBoost和随机森林。通过将患者分成70%训练30%测试,实现训练测试分割。通过设计一个预定义长度的移动窗口,功能包括心跳注释、相邻心跳间隔、香农熵和波动指数。数据:从MIT-BIH心律失常[1]和MIT-BIH心房颤动[2]数据集中使用标准心电图基准进行训练和测试。结论:实验采用不同的窗口大小和不同的超参数。在41 Beat窗口中获得了最好的结果,XGBoost实现了99%的最佳性能,F1得分为99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信