A stochastic approximation algorithm for large-dimensional systems in the Kiefer-Wolfowitz setting

J. Spall
{"title":"A stochastic approximation algorithm for large-dimensional systems in the Kiefer-Wolfowitz setting","authors":"J. Spall","doi":"10.1109/CDC.1988.194588","DOIUrl":null,"url":null,"abstract":"The author considers the problem of finding a root of the multivariate gradient equation that arises in function maximization. When only noisy measurements of the function are available, a stochastic approximation (SA) algorithm of the general type due to Kiefer and Wolfowitz (1952) is appropriate for estimating the root. An SA algorithm is presented that is based on a simultaneous-perturbation gradient approximation instead of the standard finite-difference approximation of Kiefer-Wolfowitz type procedures. Theory and numerical experience indicate that the algorithm can be significantly more efficient than the standard finite-difference-based algorithms in large-dimensional problems.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"21 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

Abstract

The author considers the problem of finding a root of the multivariate gradient equation that arises in function maximization. When only noisy measurements of the function are available, a stochastic approximation (SA) algorithm of the general type due to Kiefer and Wolfowitz (1952) is appropriate for estimating the root. An SA algorithm is presented that is based on a simultaneous-perturbation gradient approximation instead of the standard finite-difference approximation of Kiefer-Wolfowitz type procedures. Theory and numerical experience indicate that the algorithm can be significantly more efficient than the standard finite-difference-based algorithms in large-dimensional problems.<>
基弗-沃尔福威茨设定下大维系统的随机逼近算法
考虑了函数极大化中出现的多元梯度方程的求根问题。当只有函数的噪声测量可用时,基弗和沃尔福威茨(1952)提出的一般类型的随机逼近(SA)算法适用于估计根。提出了一种基于同时摄动梯度近似而不是基弗-沃尔福威茨型程序的标准有限差分近似的SA算法。理论和数值经验表明,在大维问题中,该算法比基于有限差分的标准算法效率高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信