A total variation diminishing-projection method for solving implicit numerical schemes for scalar conservation laws: a numerical study of a simple case

A. Bourgeat, Bernardo Cockburn
{"title":"A total variation diminishing-projection method for solving implicit numerical schemes for scalar conservation laws: a numerical study of a simple case","authors":"A. Bourgeat, Bernardo Cockburn","doi":"10.1137/0910018","DOIUrl":null,"url":null,"abstract":"The stability of Newton’s method applied to implicit numerical schemes for scalar conservation laws requires, in the general case, an upper bound on the size of the timesteps. A simple locally defined projection, a total variation diminishing (TVD)-projection, is introduced, and it is used to obtain always-stable extensions of Newton’s method. A numerical study of this method applied to Godunov’s implicit scheme is presented.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The stability of Newton’s method applied to implicit numerical schemes for scalar conservation laws requires, in the general case, an upper bound on the size of the timesteps. A simple locally defined projection, a total variation diminishing (TVD)-projection, is introduced, and it is used to obtain always-stable extensions of Newton’s method. A numerical study of this method applied to Godunov’s implicit scheme is presented.
求解标量守恒律隐式数值格式的全变差消投影法:一个简单情况的数值研究
牛顿方法应用于标量守恒定律的隐式数值格式的稳定性要求,在一般情况下,时间步长有上界。引入了一种简单的局部定义投影——总变差递减投影,并利用它得到牛顿方法的常稳定扩展。对该方法在Godunov隐式格式中的应用进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信