Feature extraction using an AM-FM model for gait pattern classification

Ning Wang, E. Ambikairajah, B. Celler, N. Lovell
{"title":"Feature extraction using an AM-FM model for gait pattern classification","authors":"Ning Wang, E. Ambikairajah, B. Celler, N. Lovell","doi":"10.1109/BIOCAS.2008.4696865","DOIUrl":null,"url":null,"abstract":"This paper describes classification of gait patterns from a waist-mounted triaxial accelerometer. A feature extraction technique using empirical mode decomposition (EMD) and an amplitude/frequency modulation (AM-FM) model is proposed for the classification of walking activities from accelerometry data. A set of novel features, including AM, instantaneous frequency (IF) and instantaneous amplitude (IA), representing the walking patterns were obtained based on a second-order all-pole resonator. The back-end of the system was a 32-mixture Gaussian Mixture Model (GMM) classifier. An overall classification error rate of 4.88% was achieved for the five different human gait patterns referring to walking on flat levels, walking up and down paved ramps and walking up and down stairways.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes classification of gait patterns from a waist-mounted triaxial accelerometer. A feature extraction technique using empirical mode decomposition (EMD) and an amplitude/frequency modulation (AM-FM) model is proposed for the classification of walking activities from accelerometry data. A set of novel features, including AM, instantaneous frequency (IF) and instantaneous amplitude (IA), representing the walking patterns were obtained based on a second-order all-pole resonator. The back-end of the system was a 32-mixture Gaussian Mixture Model (GMM) classifier. An overall classification error rate of 4.88% was achieved for the five different human gait patterns referring to walking on flat levels, walking up and down paved ramps and walking up and down stairways.
基于AM-FM模型的特征提取步态模式分类
本文描述了一种腰装式三轴加速度计对步态模式的分类。提出了一种基于经验模态分解(EMD)和幅频调制(AM-FM)模型的特征提取技术,用于从加速度测量数据中对步行活动进行分类。基于二阶全极谐振器,得到了一组新颖的特征,包括AM、瞬时频率(IF)和瞬时幅度(IA),代表了行走模式。该系统的后端是一个32混合高斯混合模型(GMM)分类器。在平地上行走、在铺砌的斜坡上行走、在楼梯上行走这五种不同的步态模式下,总体分类错误率为4.88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信