Color local phase quantization (CLPQ)- A new face representation approach using color texture cues

Akanksha Joshi, A. Gangwar
{"title":"Color local phase quantization (CLPQ)- A new face representation approach using color texture cues","authors":"Akanksha Joshi, A. Gangwar","doi":"10.1109/ICB.2015.7139049","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce new methods to encode color local texture features for enhanced face representation. In particular, we first propose a novel descriptor; color local phase quantization (CLPQ), which incorporates (channel-wise) unichrome and (cross channel) opponent features in frequency domain. Furthermore, we extend the CLPQ descriptor to multiple scales i.e. multiscale color LPQ (MS-CLPQ), which exploits the complementary information in different scales. In addition, we extend the multispectral LBP to multiple scales and propose multiscale color LBP (MS-CLBP), which provides illumination invariance and extracts features in spatial domain. To formulate the proposed color local texture descriptors, the unichrome and opponent features are combined using image-level fusion strategy and final representation of the descriptors is obtained using concatenation of regional histograms. To reduce high dimensionality of features, we applied Direct LDA, which also enhances the discrimination ability of the descriptors. The experimental analysis illustrates that proposed MS-CLPQ approach significantly outperforms other descriptor based approaches for face recognition (FR) and score level fusion of MS-CLPQ and MS-CLBP further improves the FR performance and robustness. The validity of the proposed approaches is ascertained by providing comprehensive comparisons on three challenging face databases; FRGC 2.0, GTDB and PUT.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we introduce new methods to encode color local texture features for enhanced face representation. In particular, we first propose a novel descriptor; color local phase quantization (CLPQ), which incorporates (channel-wise) unichrome and (cross channel) opponent features in frequency domain. Furthermore, we extend the CLPQ descriptor to multiple scales i.e. multiscale color LPQ (MS-CLPQ), which exploits the complementary information in different scales. In addition, we extend the multispectral LBP to multiple scales and propose multiscale color LBP (MS-CLBP), which provides illumination invariance and extracts features in spatial domain. To formulate the proposed color local texture descriptors, the unichrome and opponent features are combined using image-level fusion strategy and final representation of the descriptors is obtained using concatenation of regional histograms. To reduce high dimensionality of features, we applied Direct LDA, which also enhances the discrimination ability of the descriptors. The experimental analysis illustrates that proposed MS-CLPQ approach significantly outperforms other descriptor based approaches for face recognition (FR) and score level fusion of MS-CLPQ and MS-CLBP further improves the FR performance and robustness. The validity of the proposed approaches is ascertained by providing comprehensive comparisons on three challenging face databases; FRGC 2.0, GTDB and PUT.
颜色局部相位量化(CLPQ)-一种使用颜色纹理线索的新的人脸表示方法
在本文中,我们引入了新的方法来编码颜色局部纹理特征,以增强人脸表示。特别地,我们首先提出了一个新的描述符;彩色局部相位量化(CLPQ),它在频域上结合了(信道)单色和(跨信道)对手特征。此外,我们将CLPQ描述符扩展到多尺度,即多尺度颜色LPQ (MS-CLPQ),它利用了不同尺度上的互补信息。此外,我们将多光谱LBP扩展到多尺度,提出了多尺度彩色LBP (MS-CLBP),该方法提供了光照不变性和空间域特征提取。为了形成所提出的颜色局部纹理描述符,使用图像级融合策略将单色特征和对手特征结合起来,并使用区域直方图拼接获得描述符的最终表示。为了降低特征的高维数,我们采用了直接LDA,提高了描述符的识别能力。实验分析表明,所提出的MS-CLPQ方法显著优于其他基于描述符的人脸识别方法,并且MS-CLPQ和MS-CLBP的评分水平融合进一步提高了人脸识别性能和鲁棒性。通过对三个具有挑战性的人脸数据库进行综合比较,确定了所提出方法的有效性;frgc2.0, GTDB和PUT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信