{"title":"Newton\\'s equation of motion in the gravitational field of an oblate earth","authors":"D. Bakwa, Y. Jabil","doi":"10.4314/JONAMP.V11I1.40221","DOIUrl":null,"url":null,"abstract":"In this paper, we derived Newton's equation of motion for a satellite in the gravitational scalar field of a uniformly rotating, oblate spheriodal Earth using spheriodal coordinates. The resulting equation is solved for the corresponding precession and the result compared with similar ones. JONAMP Vol. 11 2007: pp. 279-286","PeriodicalId":402697,"journal":{"name":"Journal of the Nigerian Association of Mathematical Physics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Association of Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/JONAMP.V11I1.40221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we derived Newton's equation of motion for a satellite in the gravitational scalar field of a uniformly rotating, oblate spheriodal Earth using spheriodal coordinates. The resulting equation is solved for the corresponding precession and the result compared with similar ones. JONAMP Vol. 11 2007: pp. 279-286