Lossy Hyperspectral Images Coding with Exogenous Quasi Optimal Transforms

M. Barret, J. Gutzwiller, Isidore Paul Akam Bita, F. D. Vedova
{"title":"Lossy Hyperspectral Images Coding with Exogenous Quasi Optimal Transforms","authors":"M. Barret, J. Gutzwiller, Isidore Paul Akam Bita, F. D. Vedova","doi":"10.1109/DCC.2009.8","DOIUrl":null,"url":null,"abstract":"It is well known in transform coding that the Karhunen-Loève Transform (KLT) can be suboptimal for non Gaussiansources. However in many applications using JPEG2000Part 2 codecs, the KLT is generally considered as the optimal linear transform for reducing redundancies between components of hyperspectral images. In previous works, optimal spectral transforms (OST) compatible with the JPEG2000 Part 2 standard have been introduced, performing better than the KLT but with an heavier computational cost. In this paper, we show that the OST computed on a learningbasis constituted of Hyperion hyperspectral images issuedfrom one sensor performs very well, and even better thanthe KLT, on other images issued from the same sensor.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

It is well known in transform coding that the Karhunen-Loève Transform (KLT) can be suboptimal for non Gaussiansources. However in many applications using JPEG2000Part 2 codecs, the KLT is generally considered as the optimal linear transform for reducing redundancies between components of hyperspectral images. In previous works, optimal spectral transforms (OST) compatible with the JPEG2000 Part 2 standard have been introduced, performing better than the KLT but with an heavier computational cost. In this paper, we show that the OST computed on a learningbasis constituted of Hyperion hyperspectral images issuedfrom one sensor performs very well, and even better thanthe KLT, on other images issued from the same sensor.
外生拟最优变换的有损高光谱图像编码
在变换编码中,karhunen - lo变换(KLT)对于非高斯源是次优的,这是众所周知的。然而,在许多使用JPEG2000Part 2编解码器的应用中,KLT通常被认为是减少高光谱图像组件之间冗余的最佳线性变换。在以前的工作中,已经介绍了与JPEG2000第2部分标准兼容的最优频谱变换(OST),其性能优于KLT,但计算成本更高。在本文中,我们证明了在由来自一个传感器的Hyperion高光谱图像组成的学习基础上计算的OST在来自同一传感器的其他图像上表现非常好,甚至比KLT更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信