Polynomial Time Algorithms for Constructing Optimal AIFV Codes

M. Golin, Elfarouk Harb
{"title":"Polynomial Time Algorithms for Constructing Optimal AIFV Codes","authors":"M. Golin, Elfarouk Harb","doi":"10.1109/DCC.2019.00031","DOIUrl":null,"url":null,"abstract":"Huffman Codes are \"optimal\" Fixed-to-Variable (FV) codes if every source symbol can only be encoded by one codeword. Relaxing this constraint permits constructing better FV codes. More specifically, recent work has shown that AIFV codes can beat Huffman coding. AIFV codes construct a set of different coding trees between which the code alternates and are only \"almost instantaneous\" (AI). This means that decoding a word might require a delay of a finite number of bits. Current algorithms for constructing optimal AIFV codes are iterative processes that construct progressively \"better sets\" of code trees. The processes have been proven to finitely converge to the optimal code but with no known bounds on the convergence time. This paper derives a geometric interpretation of the space of AIFV codes. This permits the development of new polynomially time-bounded iterative procedures for constructing optimal AIFV codes. For the simplest case we show that a binary search procedure can replace the current iterative process. For the more complicated cases we describe how to frame the problem as a linear programming problem with an exponential number of constraints but a polynomial time separability oracle. This permits using the Grotschel, Lovasz and Schrijver ellipsoid method to solve the problem in a polynomial number of steps.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Huffman Codes are "optimal" Fixed-to-Variable (FV) codes if every source symbol can only be encoded by one codeword. Relaxing this constraint permits constructing better FV codes. More specifically, recent work has shown that AIFV codes can beat Huffman coding. AIFV codes construct a set of different coding trees between which the code alternates and are only "almost instantaneous" (AI). This means that decoding a word might require a delay of a finite number of bits. Current algorithms for constructing optimal AIFV codes are iterative processes that construct progressively "better sets" of code trees. The processes have been proven to finitely converge to the optimal code but with no known bounds on the convergence time. This paper derives a geometric interpretation of the space of AIFV codes. This permits the development of new polynomially time-bounded iterative procedures for constructing optimal AIFV codes. For the simplest case we show that a binary search procedure can replace the current iterative process. For the more complicated cases we describe how to frame the problem as a linear programming problem with an exponential number of constraints but a polynomial time separability oracle. This permits using the Grotschel, Lovasz and Schrijver ellipsoid method to solve the problem in a polynomial number of steps.
构造最优AIFV码的多项式时间算法
如果每个源符号只能被一个码字编码,那么霍夫曼码就是“最优”的定变码。放宽这个限制可以构造更好的FV代码。更具体地说,最近的研究表明,AIFV编码可以击败霍夫曼编码。AIFV代码构建了一组不同的编码树,代码在这些编码树之间交替,并且只是“几乎是瞬时的”(AI)。这意味着解码一个单词可能需要有限位数的延迟。目前用于构建最优AIFV代码的算法是迭代过程,逐步构建“更好的代码树集”。该过程已被证明是有限收敛到最优代码,但没有已知的收敛时间界限。本文导出了AIFV码空间的几何解释。这允许开发新的多项式时间有界迭代程序来构建最优AIFV代码。对于最简单的情况,我们证明了二分搜索过程可以取代当前的迭代过程。对于更复杂的情况,我们描述了如何将问题框架为具有指数数量约束但具有多项式时间可分性的线性规划问题。这允许使用Grotschel, Lovasz和Schrijver椭球方法在多项式数的步骤中解决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信