{"title":"Vehicular knowledge networking and application to risk reasoning","authors":"Seyhan Uçar, Takamasa Higuchi, Chang-Heng Wang, Duncan Deveaux, Jérôme Härri, O. Altintas","doi":"10.1145/3397166.3413467","DOIUrl":null,"url":null,"abstract":"Vehicles are expected to generate and consume an increasing amount of data, but how to perform risk reasoning over relevant data is still not yet solved. Location, time of day and driver behavior change the risk dynamically and make risk assessment challenging. This paper introduces a new paradigm, transferring information from raw sensed data to knowledge and explores the knowledge of risk reasoning through vehicular maneuver conflicts. In particular, we conduct a simulation study to analyze the driving data and extract the knowledge of risky road users and risky locations. We use knowledge to facilitate reduced volume and share it through a Vehicular Knowledge Network (VKN) for better traffic planning and safer driving.","PeriodicalId":122577,"journal":{"name":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397166.3413467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Vehicles are expected to generate and consume an increasing amount of data, but how to perform risk reasoning over relevant data is still not yet solved. Location, time of day and driver behavior change the risk dynamically and make risk assessment challenging. This paper introduces a new paradigm, transferring information from raw sensed data to knowledge and explores the knowledge of risk reasoning through vehicular maneuver conflicts. In particular, we conduct a simulation study to analyze the driving data and extract the knowledge of risky road users and risky locations. We use knowledge to facilitate reduced volume and share it through a Vehicular Knowledge Network (VKN) for better traffic planning and safer driving.