Vehicular knowledge networking and application to risk reasoning

Seyhan Uçar, Takamasa Higuchi, Chang-Heng Wang, Duncan Deveaux, Jérôme Härri, O. Altintas
{"title":"Vehicular knowledge networking and application to risk reasoning","authors":"Seyhan Uçar, Takamasa Higuchi, Chang-Heng Wang, Duncan Deveaux, Jérôme Härri, O. Altintas","doi":"10.1145/3397166.3413467","DOIUrl":null,"url":null,"abstract":"Vehicles are expected to generate and consume an increasing amount of data, but how to perform risk reasoning over relevant data is still not yet solved. Location, time of day and driver behavior change the risk dynamically and make risk assessment challenging. This paper introduces a new paradigm, transferring information from raw sensed data to knowledge and explores the knowledge of risk reasoning through vehicular maneuver conflicts. In particular, we conduct a simulation study to analyze the driving data and extract the knowledge of risky road users and risky locations. We use knowledge to facilitate reduced volume and share it through a Vehicular Knowledge Network (VKN) for better traffic planning and safer driving.","PeriodicalId":122577,"journal":{"name":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397166.3413467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Vehicles are expected to generate and consume an increasing amount of data, but how to perform risk reasoning over relevant data is still not yet solved. Location, time of day and driver behavior change the risk dynamically and make risk assessment challenging. This paper introduces a new paradigm, transferring information from raw sensed data to knowledge and explores the knowledge of risk reasoning through vehicular maneuver conflicts. In particular, we conduct a simulation study to analyze the driving data and extract the knowledge of risky road users and risky locations. We use knowledge to facilitate reduced volume and share it through a Vehicular Knowledge Network (VKN) for better traffic planning and safer driving.
车辆知识网络及其在风险推理中的应用
预计车辆将产生和消耗越来越多的数据,但如何对相关数据进行风险推理仍未解决。地点、时间和驾驶员行为会动态改变风险,使风险评估具有挑战性。本文提出了一种将原始感知数据中的信息转化为知识的新范式,探讨了通过车辆机动冲突进行风险推理的知识。特别是,我们进行了模拟研究,分析驾驶数据,提取危险道路使用者和危险位置的知识。我们利用知识来减少车辆数量,并通过车辆知识网络(VKN)共享,以改善交通规划和更安全的驾驶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信