{"title":"WakeUp: Fine-Grained Fatigue Detection Based on Multi-Information Fusion on Smart Speakers","authors":"Zhiyuan Zhao, Fan Li, Yadong Xie, Yu Wang","doi":"10.1109/INFOCOM53939.2023.10229021","DOIUrl":null,"url":null,"abstract":"With the development of society and the gradual increase of life pressure, the number of people engaged in mental work and working hours have increased significantly, resulting in more and more people in a state of fatigue. It not only reduces people’s work efficiency, but also causes health and safety related problems. The existing fatigue detection systems either have different shortcomings in diverse scenarios or are limited by proprietary equipment, which is difficult to be applied in real life. Motivated by this, we propose a multi-information fatigue detection system named WakeUp based on commercial smart speakers, which is the first to fuse physiological and behavioral information for fine-grained fatigue detection in a non-contact manner. We carefully design a method to simultaneously extract users’ physiological and behavioral information based on the MobileViT network and VMD decomposition algorithm respectively. Then, we design a multi-information fusion method based on the statistical features of these two kinds of information. In addition, we adopt an SVM classifier to achieve fine-grained fatigue level. Extensive experiments with 20 volunteers show that WakeUp can detect fatigue with an accuracy of 97.28%. Meanwhile, WakeUp can maintain stability and robustness under different experimental settings.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10229021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of society and the gradual increase of life pressure, the number of people engaged in mental work and working hours have increased significantly, resulting in more and more people in a state of fatigue. It not only reduces people’s work efficiency, but also causes health and safety related problems. The existing fatigue detection systems either have different shortcomings in diverse scenarios or are limited by proprietary equipment, which is difficult to be applied in real life. Motivated by this, we propose a multi-information fatigue detection system named WakeUp based on commercial smart speakers, which is the first to fuse physiological and behavioral information for fine-grained fatigue detection in a non-contact manner. We carefully design a method to simultaneously extract users’ physiological and behavioral information based on the MobileViT network and VMD decomposition algorithm respectively. Then, we design a multi-information fusion method based on the statistical features of these two kinds of information. In addition, we adopt an SVM classifier to achieve fine-grained fatigue level. Extensive experiments with 20 volunteers show that WakeUp can detect fatigue with an accuracy of 97.28%. Meanwhile, WakeUp can maintain stability and robustness under different experimental settings.