{"title":"Soliton Like-Breather Induced by Modulational Instability in a Generalized Nonlinear Schrödinger Equation","authors":"S. Abdoulkary, A. Mohamadou","doi":"10.5772/intechopen.100522","DOIUrl":null,"url":null,"abstract":"We consider the nonlinear Schrödinger equation modified by a rational nonlinear term. The model appears in various studies often in the context of the Ginzburg-Landau equation. We investigate modulational instability by means of a linear stability analysis and show how the nonlinear terms affect the growth rate. This analytical result is confirmed by a numerical simulation. The latter analysis shows that breather-like solitons are generated from the instability, and the effects of the nonlinear terms are again clearly seen. Moreover, by employing an auxiliary-equation method we obtain kink and anti-kink soliton as analytical solutions. Our theoretical solution is in good agreement with our numerical investigation.","PeriodicalId":184064,"journal":{"name":"The Nonlinear Schrödinger Equation [Working Title]","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Nonlinear Schrödinger Equation [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the nonlinear Schrödinger equation modified by a rational nonlinear term. The model appears in various studies often in the context of the Ginzburg-Landau equation. We investigate modulational instability by means of a linear stability analysis and show how the nonlinear terms affect the growth rate. This analytical result is confirmed by a numerical simulation. The latter analysis shows that breather-like solitons are generated from the instability, and the effects of the nonlinear terms are again clearly seen. Moreover, by employing an auxiliary-equation method we obtain kink and anti-kink soliton as analytical solutions. Our theoretical solution is in good agreement with our numerical investigation.