Server-Level Power Control

C. Lefurgy, Xiaorui Wang, Malcolm S. Allen-Ware
{"title":"Server-Level Power Control","authors":"C. Lefurgy, Xiaorui Wang, Malcolm S. Allen-Ware","doi":"10.1109/ICAC.2007.35","DOIUrl":null,"url":null,"abstract":"We present a technique that controls the peak power consumption of a high-density server by implementing a feedback controller that uses precise, system-level power measurement to periodically select the highest performance state while keeping the system within a fixed power constraint. A control theoretic methodology is applied to systematically design this control loop with analytic assurances of system stability and controller performance, despite unpredictable workloads and running environments. In a real server we are able to control power over a 1 second period to within 1 W. Additionally, we have observed that power over an 8 second period can be controlled to within 0.1 W. We believe that we are the first to demonstrate such precise control of power in a real server. Conventional servers respond to power supply constraint situations by using simple open-loop policies to set a safe performance level in order to limit peak power consumption. We show that closed-loop control can provide higher performance under these conditions and test this technique on an IBM BladeCenter HS20 server. Experimental results demonstrate that closed-loop control provides up to 82% higher application performance compared to open-loop control and up to 17% higher performance compared to a widely used ad-hoc technique.","PeriodicalId":179923,"journal":{"name":"Fourth International Conference on Autonomic Computing (ICAC'07)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"304","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Autonomic Computing (ICAC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2007.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 304

Abstract

We present a technique that controls the peak power consumption of a high-density server by implementing a feedback controller that uses precise, system-level power measurement to periodically select the highest performance state while keeping the system within a fixed power constraint. A control theoretic methodology is applied to systematically design this control loop with analytic assurances of system stability and controller performance, despite unpredictable workloads and running environments. In a real server we are able to control power over a 1 second period to within 1 W. Additionally, we have observed that power over an 8 second period can be controlled to within 0.1 W. We believe that we are the first to demonstrate such precise control of power in a real server. Conventional servers respond to power supply constraint situations by using simple open-loop policies to set a safe performance level in order to limit peak power consumption. We show that closed-loop control can provide higher performance under these conditions and test this technique on an IBM BladeCenter HS20 server. Experimental results demonstrate that closed-loop control provides up to 82% higher application performance compared to open-loop control and up to 17% higher performance compared to a widely used ad-hoc technique.
服务器级电源控制
我们提出了一种技术,通过实现一个反馈控制器来控制高密度服务器的峰值功耗,该控制器使用精确的系统级功率测量来定期选择最高性能状态,同时将系统保持在固定的功率约束内。应用控制理论方法系统地设计控制回路,分析保证系统稳定性和控制器性能,尽管工作负载和运行环境不可预测。在一个真实的服务器中,我们能够在1秒的时间内将功率控制在1w以内。此外,我们已经观察到,功率超过8秒周期可以控制在0.1 W以内。我们相信,我们是第一个在真实服务器上演示如此精确的功率控制的人。传统服务器通过使用简单的开环策略来设置安全性能水平,以限制峰值功耗,从而响应电源约束情况。我们证明了闭环控制可以在这些条件下提供更高的性能,并在IBM BladeCenter HS20服务器上测试了该技术。实验结果表明,与开环控制相比,闭环控制的应用性能提高了82%,与广泛使用的ad-hoc技术相比,闭环控制的性能提高了17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信