{"title":"Drivers of Economic and Financial Integration: A Machine Learning Approach","authors":"A. Akbari, Lilian Ng, Bruno Solnik","doi":"10.2139/ssrn.3583484","DOIUrl":null,"url":null,"abstract":"Abstract We propose a new approach to identifying drivers of economic and financial integration, separately, and across emerging and developed countries. Our advanced machine learning technique allows for nonlinear relationships, corrects for over-fitting, and is less prone to noise. It also can tackle a large number of highly correlated explanatory variables and controls for multicollinearity. Results suggest that general economic growth, increasing international trade, and contained population growth have helped emerging countries catch up to the level of the economic integration of developed countries. However, slow financial development and a high level of investment riskiness have hindered the speed of emerging countries’ financial integration. Furthermore, the results suggest that integration is a gradual process and is not driven by cyclical or transitory events.","PeriodicalId":256552,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in International Economics (Topic)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in International Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3583484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Abstract We propose a new approach to identifying drivers of economic and financial integration, separately, and across emerging and developed countries. Our advanced machine learning technique allows for nonlinear relationships, corrects for over-fitting, and is less prone to noise. It also can tackle a large number of highly correlated explanatory variables and controls for multicollinearity. Results suggest that general economic growth, increasing international trade, and contained population growth have helped emerging countries catch up to the level of the economic integration of developed countries. However, slow financial development and a high level of investment riskiness have hindered the speed of emerging countries’ financial integration. Furthermore, the results suggest that integration is a gradual process and is not driven by cyclical or transitory events.