A greedy cluster-based tribes optimization algorithm

Neda Bagherzadeh, M. Heidari, M. Akbarzadeh-T.
{"title":"A greedy cluster-based tribes optimization algorithm","authors":"Neda Bagherzadeh, M. Heidari, M. Akbarzadeh-T.","doi":"10.1109/ICTCK.2014.7033525","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a cluster-based optimization algorithm. It is a greedy agent-based tribal particle swarm optimization algorithm (GATPSO) which adapts the tribes by removing/generating particles and reconstructing tribal links in order to encourage better tribes to proliferate, and causes reducing the computation cost and preventing local optimal solutions. The proposed approach is applied to several numeric benchmarks. Results of this study demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":228765,"journal":{"name":"2014 International Congress on Technology, Communication and Knowledge (ICTCK)","volume":"101 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Congress on Technology, Communication and Knowledge (ICTCK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTCK.2014.7033525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a cluster-based optimization algorithm. It is a greedy agent-based tribal particle swarm optimization algorithm (GATPSO) which adapts the tribes by removing/generating particles and reconstructing tribal links in order to encourage better tribes to proliferate, and causes reducing the computation cost and preventing local optimal solutions. The proposed approach is applied to several numeric benchmarks. Results of this study demonstrate the effectiveness of the proposed algorithm.
基于贪婪聚类的部落优化算法
本文提出了一种基于聚类的优化算法。它是一种基于贪婪代理的部落粒子群优化算法(GATPSO),该算法通过移除/生成粒子和重建部落链接来适应部落,从而鼓励更好的部落扩散,从而降低了计算成本并防止了局部最优解。提出的方法应用于几个数值基准测试。研究结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信